login
A016752
a(n) = (2*n)^12.
2
0, 4096, 16777216, 2176782336, 68719476736, 1000000000000, 8916100448256, 56693912375296, 281474976710656, 1156831381426176, 4096000000000000, 12855002631049216, 36520347436056576, 95428956661682176, 232218265089212416, 531441000000000000, 1152921504606846976
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
FORMULA
From Amiram Eldar, Oct 11 2020: (Start)
Sum_{n>=1} 1/a(n) = 691*Pi^12/2615348736000.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1414477*Pi^12/5356234211328000. (End)
MAPLE
A016752:=n->(2*n)^12: seq(A016752(n), n=0..30); # Wesley Ivan Hurt, Sep 15 2018
MATHEMATICA
(2*Range[0, 20])^12 (* or *) LinearRecurrence[{13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1}, {0, 4096, 16777216, 2176782336, 68719476736, 1000000000000, 8916100448256, 56693912375296, 281474976710656, 1156831381426176, 4096000000000000, 12855002631049216, 36520347436056576}, 20] (* Harvey P. Dale, Apr 05 2018 *)
PROG
(Magma) [(2*n)^12: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
(PARI) vector(30, n, n--; (2*n)^12) \\ G. C. Greubel, Sep 15 2018
CROSSREFS
Cf. A016764.
Sequence in context: A223201 A223356 A017574 * A223880 A223805 A223583
KEYWORD
nonn,easy
STATUS
approved