login
A016749
a(n) = (2*n)^9.
2
0, 512, 262144, 10077696, 134217728, 1000000000, 5159780352, 20661046784, 68719476736, 198359290368, 512000000000, 1207269217792, 2641807540224, 5429503678976, 10578455953408, 19683000000000, 35184372088832, 60716992766464, 101559956668416, 165216101262848
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = 10*a(n-1)-45*a(n-2)+ 120*a(n-3)- 210*a(n-4)+252*a(n-5)-210*a(n-6)+120*a(n-7)-45*a(n-8)+10*a(n-9)-a(n-10). - Harvey P. Dale, Jan 13 2013
From Amiram Eldar, Oct 11 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(9)/512.
Sum_{n>=1} (-1)^(n+1)/a(n) = 255*zeta(9)/131072. (End)
MAPLE
A016749:=n->(2*n)^9: seq(A016749(n), n=0..30); # Wesley Ivan Hurt, Sep 15 2018
MATHEMATICA
Table[(2n)^9, {n, 0, 40}] (* Stefan Steinerberger, Apr 08 2006 *)
LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 512, 262144, 10077696, 134217728, 1000000000, 5159780352, 20661046784, 68719476736, 198359290368}, 20] (* Harvey P. Dale, Jan 13 2013 *)
PROG
(Magma) [(2*n)^9: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
(PARI) vector(30, n, n--; (2*n)^9) \\ G. C. Greubel, Sep 15 2018
CROSSREFS
Cf. A016761.
Sequence in context: A328200 A181244 A181252 * A144323 A320861 A347858
KEYWORD
nonn,easy
EXTENSIONS
More terms from Stefan Steinerberger, Apr 08 2006
STATUS
approved