login
A223805
Number of 6Xn 0..3 arrays with rows and antidiagonals unimodal
1
4096, 16777216, 9169032476, 1216562667529, 70950413903439, 2401987689157097, 54863639440148543, 926152518399324838, 12281305845727356247, 133569446404885491509, 1229947638993873947499, 9824466906501135882300
OFFSET
1,1
COMMENTS
Row 6 of A223801
LINKS
FORMULA
Empirical: a(n) = (94871989966071037/12399777559663373915599981605027840000000)*n^36 + (23494487319688423/21753995718707673536140318605312000000)*n^35 + (19815461219045083483/196821866026402760565079073095680000000)*n^34 + (387946863583945231/57888784125412576636787962675200000)*n^33 + (1177484665113344641/3432141351309046045659365376000000)*n^32 + (615940986658681/43992616415246567217089740800)*n^31 + (249926773655883881424689/534749765381377174210797895680000000)*n^30 + (4630069145782751496907/356499843587584782807198597120000)*n^29 + (178133742871226319480781/585385621654490612162887680000000)*n^28 + (6962809860198885640273/1147814944420569827770368000000)*n^27 + (666626499383242550268556343/6439241838199396733791764480000000)*n^26 + (522351494242690781724431/343976593920907945181184000000)*n^25 + (259385049672212475250399091383/13522407860218733140962705408000000)*n^24 + (94069937609216051584228677343/450746928673957771365423513600000)*n^23 + (150606744114958980477692573/77125905356322873802752000000)*n^22 + (60407333375536982936116523/3856295267816143690137600000)*n^21 + (18552609924642994134467759158073/173070531619588528813375488000000)*n^20 + (398421495171448567208594349137/641001968961438995605094400000)*n^19 + (32999625284514089244451420058951999/10903443492034077315242655744000000)*n^18 + (3444424661623804094160490174561/281306591641746060764774400000)*n^17 + (813052700533005951081065902821133/19997645460246573707427840000000)*n^16 + (95627195506301062688987740160173/874896988885787599699968000000)*n^15 + (283794291443517721003321123962583391/1207357844662386887585955840000000)*n^14 + (20165452979436273060452527083533/51596489088136191777177600000)*n^13 + (65311515436625900041815166858211147/115247794263227839269568512000000)*n^12 + (2590786840107227108334729278011/10271639417399985674649600000)*n^11 + (330914440339976752306544596432769/198840224746769909022720000000)*n^10 - (36168405113352687550265305231771/2540736205097615504179200000)*n^9 - (4359271111022264447540327478101011/1228022499130514160353280000000)*n^8 - (1695820430249495689620665968078387/5116760413043809001472000000)*n^7 + (7268239430782963931795377473941916839/30534267764838930216284160000000)*n^6 - (139344733258938107220685649337424153/63613057843414437950592000000)*n^5 + (47437635676535991526724411394898871/8239405587337489105981440000)*n^4 - (238200143499847388140289435527/18790835585060867328000)*n^3 + (14071590518507157155692107883/589755662301693888000)*n^2 - (635163845155509650059/16044839210400)*n + 20888560 for n>3
EXAMPLE
Some solutions for n=3
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..0....0..2..0....0..2..0....0..0..0....0..2..0....0..0..0....0..0..0
..3..2..1....1..2..3....1..2..1....0..0..3....0..2..2....1..2..1....2..2..2
..0..2..3....1..2..3....3..2..0....3..3..3....1..3..3....1..1..2....1..2..0
..0..0..1....1..2..1....1..3..1....2..2..3....3..3..0....1..1..0....0..1..3
CROSSREFS
Sequence in context: A017574 A016752 A223880 * A223583 A222143 A185565
KEYWORD
nonn
AUTHOR
R. H. Hardin Mar 27 2013
STATUS
approved