|
|
A016751
|
|
a(n) = (2*n)^11.
|
|
2
|
|
|
0, 2048, 4194304, 362797056, 8589934592, 100000000000, 743008370688, 4049565169664, 17592186044416, 64268410079232, 204800000000000, 584318301411328, 1521681143169024, 3670344486987776, 8293509467471872, 17714700000000000, 36028797018963968, 70188843638032384
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
|
|
FORMULA
|
G.f.: 2048*x*(1 + 2036*x + 152637*x^2 + 2203488*x^3 + 9738114*x^4 + 15724248*x^5 + 9738114*x^6 + 2203488*x^7 + 152637*x^8 + 2036*x^9 + x^10)/(x-1)^12. - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 11 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(11)/2048.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1023*zeta(11)/2097152. (End)
|
|
MAPLE
|
A016751:=n->(2*n)^11: seq(A016751(n), n=0..30); # Wesley Ivan Hurt, Sep 15 2018
|
|
MATHEMATICA
|
Table[(2*n)^11, {n, 0, 30}] (* G. C. Greubel, Sep 15 2018 *)
|
|
PROG
|
(MAGMA) [(2*n)^11: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
(PARI) vector(30, n, n--; (2*n)^11) \\ G. C. Greubel, Sep 15 2018
|
|
CROSSREFS
|
Cf. A016763.
Sequence in context: A035769 A107565 A013702 * A016799 A323543 A016835
Adjacent sequences: A016748 A016749 A016750 * A016752 A016753 A016754
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|