login
A016750
a(n) = (2*n)^10.
2
0, 1024, 1048576, 60466176, 1073741824, 10000000000, 61917364224, 289254654976, 1099511627776, 3570467226624, 10240000000000, 26559922791424, 63403380965376, 141167095653376, 296196766695424, 590490000000000, 1125899906842624, 2064377754059776, 3656158440062976
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: -1024*x*(1+x)*(x^8 + 1012*x^7 + 46828*x^6 + 408364*x^5 + 901990*x^4 + 408364*x^3 + 46828*x^2 + 1012*x + 1)/(x-1)^11. - R. J. Mathar, Jul 07 2017
From Amiram Eldar, Oct 11 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi^10/95800320.
Sum_{n>=1} (-1)^(n+1)/a(n) = 73*Pi^10/7007109120. (End)
MAPLE
A016750:=n->(2*n)^10: seq(A016750(n), n=0..30); # Wesley Ivan Hurt, Sep 15 2018
MATHEMATICA
Table[(2*n)^10, {n, 0, 30}] (* G. C. Greubel, Sep 15 2018 *)
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {0, 1024, 1048576, 60466176, 1073741824, 10000000000, 61917364224, 289254654976, 1099511627776, 3570467226624, 10240000000000}, 30] (* Harvey P. Dale, May 11 2022 *)
PROG
(Magma) [(2*n)^10: n in [0..20]]; // Vincenzo Librandi, Sep 05 2011
(PARI) vector(30, n, n--; (2*n)^10) \\ G. C. Greubel, Sep 15 2018
CROSSREFS
Cf. A016762.
Sequence in context: A229104 A223200 A017573 * A223879 A223804 A223582
KEYWORD
nonn,easy
STATUS
approved