The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005320 a(n) = 4*a(n-1) - a(n-2), with a(0) = 0, a(1) = 3. (Formerly M2919) 13
 0, 3, 12, 45, 168, 627, 2340, 8733, 32592, 121635, 453948, 1694157, 6322680, 23596563, 88063572, 328657725, 1226567328, 4577611587, 17083879020, 63757904493, 237947738952, 888033051315, 3314184466308, 12368704813917 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS For n > 1, a(n-1) is the determinant of the n X n band matrix which has {2,4,4,...,4,4,2} on the diagonal and a 1 on the entire super- and subdiagonal. This matrix appears when constructing a natural cubic spline interpolating n equally spaced data points. - g.degroot(AT)phys.uu.nl, Feb 14 2007 Integer values of x that make 9+3*x^2 a perfect square. - Lorenz H. Menke, Jr., Mar 26 2008 The intermediate convergents to 3^(1/2), beginning with 3/2, 12/7, 45/26, 168/97, comprise a strictly increasing sequence whose numerators are the terms of this sequence and denominators are A001075. - Clark Kimberling, Aug 27 2008 a(n) also give the altitude to the middle side of a Super-Heronian Triangle. - Johannes Boot, Oct 14 2010 a(n) gives values of y satisfying 3*x^2 - 4*y^2 = 12; corresponding x values are given by A003500. - Sture Sjöstedt, Dec 19 2017 REFERENCES Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 C. Banderier and D. Merlini, Lattice paths with an infinite set of jumps, FPSAC02, Melbourne, 2002. I. M. Gessel, Ji Li, Compositions and Fibonacci identities, J. Int. Seq. 16 (2013) 13.4.5 Tanya Khovanova, Recursive Sequences Clark Kimberling, Best lower and upper approximates to irrational numbers, Elemente der Mathematik, 52 (1997) 122-126. E. Keith Lloyd, The Standard Deviation of 1, 2,..., n: Pell's Equation and Rational Triangles, Math. Gaz. vol 81 (1997), 231-243. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. William H. Richardson, Super-Heronian Triangles from Johannes Boot, Oct 14 2010 Index entries for linear recurrences with constant coefficients, signature (4,-1). FORMULA a(n) = (sqrt(3)/2)*(2+sqrt(3))^n-(sqrt(3)/2)*(2-sqrt(3))^n. - Antonio Alberto Olivares, Jan 17 2004 G.f.: 3*x/(x^2-4*x+1). - Harvey P. Dale, Mar 04 2012 a(n) = 3*A001353(n). - R. J. Mathar, Mar 14 2016 MAPLE A005320:=3*z/(1-4*z+z**2); # Simon Plouffe in his 1992 dissertation a:= n-> (Matrix([[3, 0]]). Matrix([[4, 1], [ -1, 0]])^n)[1, 2]: seq(a(n), n=0..50); # Alois P. Heinz, Aug 14 2008 MATHEMATICA Det[SparseArray[{{i_, i_} -> If[i == 1 || i == n, 2, 4], {i_, j_} -> If[Abs[i - j] == 1, 1, 0]}, {n, n}]] (* the recurrence relation is faster! g.degroot(AT)phys.uu.nl, Feb 14 2007 *) Do[If[IntegerQ[Sqrt[(9 + 3 x^2)]], Print[{x, Sqrt[(9 + 3 x^2)]}]], {x, 0, 2000000}] (* Lorenz H. Menke, Jr., Mar 26 2008 *) LinearRecurrence[{4, -1}, {0, 3}, 30] (* Harvey P. Dale, Mar 04 2012 *) PROG (PARI) Vec(3/(x^2-4*x+1)+O(x^99)) \\ Charles R Greathouse IV, Mar 05 2012 CROSSREFS Cf. A001075, A002194, A082841, A003500. Sequence in context: A229936 A258626 A064017 * A062561 A128593 A085481 Adjacent sequences:  A005317 A005318 A005319 * A005321 A005322 A005323 KEYWORD nonn,easy AUTHOR EXTENSIONS Typo in definition corrected by Johannes Boot, Feb 05 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 23 21:51 EST 2020. Contains 338603 sequences. (Running on oeis4.)