login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001783 n-phi-torial, or phi-torial of n: Product k, 1<=k<=n, k relatively prime to n.
(Formerly M0921 N0346)
25
1, 1, 2, 3, 24, 5, 720, 105, 2240, 189, 3628800, 385, 479001600, 19305, 896896, 2027025, 20922789888000, 85085, 6402373705728000, 8729721, 47297536000, 1249937325, 1124000727777607680000, 37182145, 41363226782215962624 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

In other words, a(1) = 1 and for n >= 2, a(n) = product of the phi(n) numbers < n and relatively prime to n.

From Gauss's generalization of Wilson's theorem (see Weisstein link) it follows that, for n>1, a(n) == -1 (mod n) if and only if there exists a primitive root modulo n (cf. the Hardy and Wright reference, Theorem 129. p. 102). - Vladimir Shevelev, May 11 2012

Islam & Manzoor prove that a(n) is an injection for n > 1, see links. In other words, if a(m) = a(n), and min(m, n) > 1, then m = n. - Muhammed Hedayet, May 25 2016

REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..200

J. B. Cosgrave and K. Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008)

J. B. Cosgrave, K. Dilcher, The multiplicative orders of certain Gauss factorials, Intl. J. Number Theory 7 (1) (2011) 145-171.

S. W. Golomb and William Small, Problem E1045, Amer. Math. Monthly, 60 (1953), 422.

Muhammed H. Islam and Shahriar Manzoor, φ1 and phitorial are injections, for any positive integer N, where N > 1

Laszlo Toth, Weighted gcd-sum functions, J. Integer Sequences, 14 (2011), Article 11.7.7

Eric Weisstein's World of Mathematics, Wilson's Theorem

FORMULA

a(n) = n^phi(n)*Product_{d|n} (d!/d^d)^mu(n/d); phi=A000010 is the Euler totient function and mu=A008683 the Moebius function (Tom M. Apostol, Introduction to Analytic Number Theory, New York 1984, p. 48). - Franz Vrabec, Jul 08 2005

a(n) = n!/A066570(n). - R. J. Mathar, Mar 10 2011

A001221(a(n)) = A000720(n) - A001221(n) = A048865(n).

A006530(a(n)) = A136548(n). - Enrique Pérez Herrero, Jul 23 2011

a(n) = A124441(n)*A124442(n). - M. F. Hasler, Jul 23 2011

a(n) == (-1)^A211487(n) (mod n). - Vladimir Shevelev, May 13 2012

MAPLE

A001783 := proc(n) local i, t1; t1 := 1; for i from 1 to n do if gcd(i, n)=1 then t1 := t1*i; fi; od; t1; end;

A001783 := proc(n) local i; mul(i, i=select(k->igcd(n, k)=1, [$1..n])) end; # Peter Luschny, Oct 30 2010

MATHEMATICA

A001783[n_]:=Times@@Select[Range[n], CoprimeQ[n, #]&];

Array[A001783, 20] (* Enrique Pérez Herrero, Jul 23 2011 *)

PROG

(PARI) A001783(n)=prod(k=2, n-1, k^(gcd(k, n)==1))  \\ M. F. Hasler, Jul 23 2011

(PARI) a(n)=my(f=factor(n), t=n^eulerphi(f)); fordiv(f, d, t*=(d!/d^d)^moebius(n/d)); t \\ Charles R Greathouse IV, Nov 05 2015

(Haskell)

a001783 = product . a038566_row

-- Reinhard Zumkeller, Mar 04 2012, Aug 26 2011

(Sage)

def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)

def A001783(n): return Gauss_factorial(n, n)

[A001783(n) for n in (1..25)] # Peter Luschny, Oct 01 2012

CROSSREFS

Cf. A023896, A066570, A038566, A124441.

Sequence in context: A115031 A030418 A037277 * A095996 A061098 A160630

Adjacent sequences:  A001780 A001781 A001782 * A001784 A001785 A001786

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from James A. Sellers, Dec 23 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 27 05:30 EDT 2016. Contains 275064 sequences.