login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A211487 Characteristic sequence of numbers n having a primitive root modulo n. 3
0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1

COMMENTS

a(1) = 0, since we have an empty set of numbers more than 0 and less than 1.

If A(x) is the counting function of a(n)=1, n<=x, then A(x)~2*x/log(x) as x tends to infinity.

Characteristic function of A033948 (apart from the initial term). - Antti Karttunen, Aug 22 2017

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..65537

Index entries for characteristic functions

FORMULA

a(n) = 1 iff n = 2, 4, p^k, 2*p^k, where p is an odd prime.

A001783(n) ≡ (-1)^a(n) mod n.

From Antti Karttunen, Aug 22 2017: (Start)

For n > 1, if A034380(n) = 1, a(n) = 1, otherwise a(n) = 0.

A103131(n) = (-1)^a(n) for n > 2.

(End)

PROG

(PARI) A211487(n) = if(n%2, !!isprimepower(n), (n==2 || n==4 || (isprimepower(n/2, &n) && n>2))); \\ Antti Karttunen, Aug 22 2017, after Charles R Greathouse IV's code for A033948.

CROSSREFS

Cf. A001783, A033948, A034380, A103131.

Sequence in context: A196147 A242647 A275606 * A252372 A204447 A188642

Adjacent sequences:  A211484 A211485 A211486 * A211488 A211489 A211490

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, May 13 2012

EXTENSIONS

More terms from Antti Karttunen, Aug 22 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 14 06:01 EDT 2018. Contains 313748 sequences. (Running on oeis4.)