login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A216919 The Gauss factorial N_n! for N >= 0, n >= 1, square array read by antidiagonals. 11
1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 15, 40, 3, 6, 1, 1, 1, 40320, 105, 40, 15, 24, 1, 2, 1, 1, 362880, 105, 280, 15, 24, 1, 6, 1, 1, 1, 3628800, 945, 2240, 105, 144, 5, 24, 3, 2, 1, 1, 39916800, 945 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

The term is due to Cosgrave & Dilcher. The Gauss factorial should not be confused with the q-factorial [n]_q! which is also called Gaussian factorial.

LINKS

Alois P. Heinz, Antidiagonals n = 1..141, flattened

J. B. Cosgrave, K. Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008).

J. B. Cosgrave, K. Dilcher, An Introduction to Gauss Factorials, The American Mathematical Monthly, Vol. 118, No. 9 (2011), 812-829.

K. Dilcher, Gauss Factorials: Properties and Applications. Video by the Irmacs Centre, May 18, 2011.

FORMULA

N_n! = product_{1<=j<=N, GCD(j,n)=1} j.

EXAMPLE

[n\N][0, 1, 2, 3,  4,   5,   6,    7,     8,      9,     10]

------------------------------------------------------------

[  1] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A000142]

[  2] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945 [A055634, A133221]

[  3] 1, 1, 2, 2,  8,  40,  40,  280,  2240,   2240,   22400 [A232980]

[  4] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945

[  5] 1, 1, 2, 6, 24,  24, 144, 1008,  8064,  72576,   72576 [A232981]

[  6] 1, 1, 1, 1,  1,   5,   5,   35,    35,     35,      35 [A232982]

[  7] 1, 1, 2, 6, 24, 120, 720,  720,  5760,  51840,  518400 [A232983]

[  8] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945

[  9] 1, 1, 2, 2,  8,  40,  40,  280,  2240,   2240,   22400

[ 10] 1, 1, 1, 3,  3,   3,   3,   21,    21,    189,     189 [A232984]

[ 11] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A232985]

[ 12] 1, 1, 1, 1,  1,   5,   5,   35,    35,     35,      35

[ 13] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800

MAPLE

A:= (n, N)-> mul(`if`(igcd(j, n)=1, j, 1), j=1..N):

seq (seq (A(n, d-n), n=1..d), d=1..12);  # Alois P. Heinz, Oct 03 2012

MATHEMATICA

GaussFactorial[m_, n_] := Product[ If[ GCD[j, n] == 1, j, 1], {j, 1, m}]; Table[ GaussFactorial[m - n, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)

PROG

(Sage)

def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)

for n in (1..13): [Gauss_factorial(N, n) for N in (0..10)]

(PARI) T(m, n)=prod(k=2, m, if(gcd(k, n)==1, k, 1))

for(s=1, 10, for(n=1, s, print1(T(s-n, n)", "))) \\ Charles R Greathouse IV, Oct 01 2012

CROSSREFS

A000142(n) = n! = Gauss_factorial(n, 1).

A001147(n) = Gauss_factorial(2*n, 2).

A055634(n) = Gauss_factorial(n, 2)*(-1)^n.

A001783(n) = Gauss_factorial(n, n).

A124441(n) = Gauss_factorial(floor(n/2), n).

A124442(n) = Gauss_factorial(n, n)/Gauss_factorial(floor(n/2), n).

A066570(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n).

Cf. A133221, A232980, A232981, A232982, A232983, A232984, A232985.

Sequence in context: A204168 A216914 A216917 * A152656 A096162 A333144

Adjacent sequences:  A216916 A216917 A216918 * A216920 A216921 A216922

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Oct 01 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 17:14 EDT 2020. Contains 334828 sequences. (Running on oeis4.)