This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066570 Product of numbers <= n that have a prime factor in common with n. 6
 1, 2, 3, 8, 5, 144, 7, 384, 162, 19200, 11, 1244160, 13, 4515840, 1458000, 10321920, 17, 75246796800, 19, 278691840000, 1080203040, 899245670400, 23, 16686729658368000, 375000, 663152807116800, 7142567040, 209964381084057600, 29, 1229978843118305280000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Empty product, 1, for n = 1. a(p) = p if p is a prime. LINKS T. D. Noe, Table of n, a(n) for n = 1..200 FORMULA a(n) = n!/A001783(n). a(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n) (see A216919). - Peter Luschny, Oct 02 2012 EXAMPLE a(7) = 7, a(9) = 3*6*9 = 162. MAPLE A066570 := proc(n) local i; mul(i, i=remove(k->igcd(n, k)=1, [\$1..n])) end: # Peter Luschny, Oct 11 2011 MATHEMATICA Table[Times @@ Select[Range[2, n], GCD[#, n] > 1 &], {n, 30}] (* T. D. Noe, Oct 04 2012 *) PROG (Sage) def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) def A066570(n): return Gauss_factorial(n, 1)/Gauss_factorial(n, n) [A066570(n) for n in (1..30)] # Peter Luschny, Oct 02 2012 (PARI) a(n) = prod(k=1, n, if (gcd(k, n) != 1, k, 1)); \\ Michel Marcus, Nov 02 2017 CROSSREFS Cf. A001783, A216919. Sequence in context: A067911 A243103 A051696 * A073656 A047930 A073875 Adjacent sequences:  A066567 A066568 A066569 * A066571 A066572 A066573 KEYWORD nonn,easy AUTHOR Amarnath Murthy, Dec 19 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 11 19:09 EST 2017. Contains 295919 sequences.