This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095996 a(n) = largest divisor of n! that is coprime to n. 7
 1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, 479001600, 868725, 14350336, 638512875, 20922789888000, 14889875, 6402373705728000, 14849255421, 7567605760000, 17717861581875, 1124000727777607680000, 2505147019375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The denominators of the coefficients in Taylor series for LambertW(x) are 1, 1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, ...,  which is this sequence prefixed by 1. (Cf. A227831.) - N. J. A. Sloane, Aug 02 2013 The second Mathematica program is faster than the first for large n. - T. D. Noe, Sep 07 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 FORMULA a(p) = (p-1)!. a(n) = n!/A051696(n) = (n-1)!/A062763(n). a(n) = numerator(Sum_{j = 0..n} (-1)^(n-j)*binomial(n,j)*(j/n+1)^n ). - Vladimir Kruchinin, Jun 02 2013 a(n) = denominator(n^n/n!). - Vincenzo Librandi Sep 04 2014 MATHEMATICA f[n_] := Select[Divisors[n! ], GCD[ #, n] == 1 &][[ -1]]; Table[f[n], {n, 30}] Denominator[Exp[Table[Limit[Zeta[s]*Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1, n}], s -> 1], {n, 1, 30}]]] (* Conjecture Mats Granvik, Sep 09 2013 *) Table[Denominator[n^n/n!], {n, 30}] (* Vincenzo Librandi, Sep 04 2014 *) PROG (Maxima) a(n):=sum((-1)^(n-j)*binomial(n, j)*(j/n+1)^n, j, 0, n); makelist(num(a(n), n, 1, 20); /* Vladimir Kruchinin, Jun 02 2013 */ (MAGMA) [Denominator(n^n/Factorial(n)): n in [1..25]]; // Vincenzo Librandi, Sep 04 2014 (PARI) for(n=1, 50, print1(denominator(n^n/n!), ", ")) \\ G. C. Greubel, Nov 14 2017 CROSSREFS Cf. A036503, A227831, A066570. Sequence in context: A030418 A037277 A001783 * A308943 A061098 A160630 Adjacent sequences:  A095993 A095994 A095995 * A095997 A095998 A095999 KEYWORD nonn AUTHOR Robert G. Wilson v, Jul 19 2004, based on a suggestion from Leroy Quet, Jun 18 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 26 00:35 EDT 2019. Contains 326324 sequences. (Running on oeis4.)