login
A058042
Trajectory of binary number 10110 under the operation 'Reverse and Add!' carried out in base 2.
21
10110, 100011, 1010100, 1101001, 10110100, 11100001, 101101000, 110010101, 1011101000, 1101000101, 10111010000, 11000101101, 101111010000, 110010001101, 1011110100000, 1100001011101, 10111110100000
OFFSET
0,1
COMMENTS
According to J. Walker, Ronald Sprague has proved that this trajectory does not contain a palindrome. [I would like a reference for this.] Another proof has been given by Klaus Brockhaus.
10110 is the smallest number with this property in base 2. The analogous number in base 10 is believed to be 196, but its trajectory (see A006960) has never been proved not to contain a palindrome.
The binary numbers have a regular pattern with cycle length 4:
a(4k) = 101^(k+1)010^(k+1) for k >= 1,
a(4k+1) = 1101^(k-1)0001^(k-1)01 for k >= 2,
a(4k+2) = 101^(k+1)010^(k+2) for k >= 0,
a(4k+3) = 110^(k+1)101^(k)01 for k >= 1, where ^ stands for repeated concatenation. - A.H.M. Smeets, Feb 03 2019
From A.H.M. Smeets, Feb 11 2019: (Start)
Pattern with cycle length 4 represented by contextfree grammars with production rules:
S_a -> 10 T_a 00, T_a -> 1 T_a 0 | 1101;
S_b -> 11 T_b 01, T_b -> 0 T_b 1 | 1000;
S_c -> 10 T_c 000, T_c -> 1 T_c 0 | 1101;
S_d -> 11 T_d 101, T_d -> 0 T_d 1 | 0010;
see also A058042 for similar grammars for the binary represented trajectory of 77. (End)
FORMULA
a(n) = A007088(A061561(n)). - Reinhard Zumkeller, Apr 21 2013
MATHEMATICA
Clear[a]; a[0] = 10110; a[n_] := a[n] = (m = IntegerDigits[ a[n-1] ]; m2 = FromDigits[m, 2]; IntegerDigits[ FromDigits[m // Reverse, 2] + m2, 2] // FromDigits); Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Apr 03 2013 *)
PROG
(ARIBAS) var m, c, rev: integer; end; m := 22; c := 1; bit_write(m); write(" "); rev := bit_reverse(m); while m <> rev and c < 25 do inc(c); m := m + rev; bit_write(m); write(" "); rev := bit_reverse(m); end;
(Haskell)
a058042 = a007088 . a061561 -- Reinhard Zumkeller, Apr 21 2013
CROSSREFS
See A061561 for the terms of A058042 written in base 10. Cf. A016016, A006960, A023108.
Sequence in context: A227409 A352947 A260247 * A191244 A269066 A161786
KEYWORD
nonn,nice,base
AUTHOR
N. J. A. Sloane, May 18 2001
EXTENSIONS
More terms from Klaus Brockhaus, May 27 2001
STATUS
approved