login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007906
Number of steps for aliquot sequence for n to converge to 0, or -1 if it never reaches 0.
10
1, 2, 2, 3, 2, -1, 2, 3, 4, 4, 2, 7, 2, 5, 5, 6, 2, 4, 2, 7, 3, 6, 2, 5, -1, 7, 3, -1, 2, 15, 2, 3, 6, 8, 3, 4, 2, 7, 3, 4, 2, 14, 2, 5, 7, 8, 2, 6, 4, 3, 4, 9, 2, 13, 3, 5, 3, 4, 2, 11, 2, 9, 3, 4, 3, 12, 2, 5, 4, 6, 2, 9, 2, 5, 5, 5, 3, 11, 2, 7, 5, 6, 2, 6, 3, 9, 7, 7, 2, 10, 4, 6, 4, 4, -1, 9, 2, 3
OFFSET
1,2
COMMENTS
Length of transient part of trajectory of n if trajectory reaches 1, otherwise a(n) = -1. See A098008 for another version. See A098007 for further information.
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B6.
R. K. Guy and J. L. Selfridge, Interim report on aliquot series, pp. 557-580 of Proceedings Manitoba Conference on Numerical Mathematics. University of Manitoba, Winnipeg, Oct 1971.
LINKS
PROG
(Scheme)
(define (A007906 n) (let loop ((visited (list n)) (i 1)) (let ((next (A001065 (car visited)))) (cond ((zero? next) i) ((member next visited) -1) (else (loop (cons next visited) (+ 1 i)))))))
(define (A001065 n) (- (A000203 n) n)) ;; For an implementation of A000203, see under that entry.
;; Antti Karttunen, Nov 02 2017
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Gerenrot (sch116(AT)yahoo.com)
EXTENSIONS
Definition changed by N. J. A. Sloane, Nov 02 2017 at the suggestion of Antti Karttunen.
STATUS
approved