OFFSET
2,1
COMMENTS
The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.
LINKS
Paolo Xausa, Table of n, a(n) for n = 2..10000
Eric Weisstein's World of Mathematics, Pentakis Dodecahedron.
Wikipedia, Pentakis dodecahedron.
FORMULA
Equals (5/3)*sqrt((421 + 63*sqrt(5))/2) = (5/3)*sqrt((421 + 63*A002163)/2).
EXAMPLE
27.93524960070079310581019127996368070525778610907...
MATHEMATICA
First[RealDigits[5/3*Sqrt[(421 + 63*Sqrt[5])/2], 10, 100]] (* or *)
First[RealDigits[PolyhedronData["PentakisDodecahedron", "SurfaceArea"], 10, 100]]
KEYWORD
AUTHOR
Paolo Xausa, Dec 16 2024
STATUS
approved