login
A377750
Decimal expansion of the surface area of a truncated icosahedron with unit edge length.
2
7, 2, 6, 0, 7, 2, 5, 3, 0, 3, 4, 1, 3, 3, 9, 2, 1, 8, 7, 8, 9, 3, 1, 5, 3, 3, 9, 7, 3, 8, 3, 9, 4, 8, 6, 2, 0, 1, 1, 7, 2, 6, 4, 7, 6, 5, 4, 4, 3, 3, 7, 9, 8, 7, 9, 2, 1, 5, 9, 3, 4, 5, 8, 6, 7, 8, 4, 4, 4, 1, 8, 4, 1, 3, 7, 7, 1, 5, 9, 5, 8, 8, 8, 4, 2, 3, 6, 8, 0, 4
OFFSET
2,1
LINKS
Eric Weisstein's World of Mathematics, Truncated Icosahedron.
FORMULA
Equals 3*(10*sqrt(3) + sqrt(25 + 10*sqrt(5))) = 30*A002194 + 3*sqrt(25 + 10*A002163).
Equals 30*(A002194 + A375067).
EXAMPLE
72.60725303413392187893153397383948620117264765443...
MATHEMATICA
First[RealDigits[3*(10*Sqrt[3] + Sqrt[25 + Sqrt[500]]), 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TruncatedIcosahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A377751 (volume), A377752 (circumradius), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A010527 (analogous for a regular icosahedron, with offset 1).
Sequence in context: A117029 A377276 A128475 * A309647 A225444 A175408
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Nov 06 2024
STATUS
approved