login
A377752
Decimal expansion of the circumradius of a truncated icosahedron with unit edge length.
2
2, 4, 7, 8, 0, 1, 8, 6, 5, 9, 0, 6, 7, 6, 1, 5, 5, 3, 7, 5, 6, 6, 4, 0, 7, 9, 1, 2, 2, 6, 6, 3, 0, 7, 8, 0, 6, 9, 3, 6, 4, 9, 4, 7, 3, 2, 9, 7, 5, 7, 9, 4, 3, 8, 5, 5, 4, 2, 9, 5, 8, 3, 8, 8, 5, 3, 1, 5, 9, 5, 7, 7, 1, 2, 0, 7, 4, 2, 1, 6, 7, 6, 1, 8, 4, 2, 6, 2, 2, 0
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Truncated Icosahedron.
FORMULA
Equals sqrt(58 + 18*sqrt(5))/4 = sqrt(58 + 18*A002163)/4.
EXAMPLE
2.47801865906761553756640791226630780693649473...
MATHEMATICA
First[RealDigits[Sqrt[58 + 18*Sqrt[5]]/4, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TruncatedIcosahedron", "Circumradius"], 10, 100]]
CROSSREFS
Cf. A377750 (surface area), A377751 (volume), A205769 (midradius + 1), A377787 (Dehn invariant).
Cf. A019881 (analogous for a regular icosahedron).
Cf. A002163.
Sequence in context: A063034 A351745 A094541 * A166928 A237199 A335192
KEYWORD
nonn,cons,easy
AUTHOR
Paolo Xausa, Nov 07 2024
STATUS
approved