login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377754
Number of edge cuts in the 2n-crossed prism graph.
1
31, 3013, 230903, 15918887, 1050866239, 68122980063, 4382747597055, 281087648633983, 18004694320957055, 1152680455397907455, 73781031645430967935, 4722220772206726899711, 302227902088261487862399, 19342726881749033661693439, 1237937954680462294908637823, 79228112298664648061924646911
OFFSET
1,1
COMMENTS
The sequence has been extended to n = 1 using the recurrence. - Andrew Howroyd, Dec 19 2024
LINKS
Eric Weisstein's World of Mathematics, Crossed Prism Graph.
Eric Weisstein's World of Mathematics, Edge Cut.
Index entries for linear recurrences with constant coefficients, signature (112,-3705,41870,-87500,37704,-4608).
FORMULA
G.f.: x*(31 - 459*x + 8302*x^2 - 77054*x^3 + 4700*x^4 - 2304*x^5)/((1 - 2*x)*(1 - 64*x)*(1 - 23*x + 6*x^2)^2). - Andrew Howroyd, Dec 19 2024
PROG
(PARI) Vec((31 - 459*x + 8302*x^2 - 77054*x^3 + 4700*x^4 - 2304*x^5)/((1 - 2*x)*(1 - 64*x)*(1 - 23*x + 6*x^2)^2) + O(x^20)) \\ Andrew Howroyd, Dec 19 2024
CROSSREFS
Cf. A297028.
Sequence in context: A218424 A354221 A259866 * A217913 A174584 A276111
KEYWORD
nonn,easy,changed
AUTHOR
Eric W. Weisstein, Nov 06 2024
EXTENSIONS
a(1) prepended and a(5) onwards from Andrew Howroyd, Dec 19 2024
STATUS
approved