

A166928


Decimal expansion of smaller solution to 3^x = x^3.


0



2, 4, 7, 8, 0, 5, 2, 6, 8, 0, 2, 8, 8, 3, 0, 2, 4, 1, 1, 8, 9, 3, 7, 3, 6, 5, 1, 6, 8, 9, 4, 6, 9, 0, 3, 0, 7, 8, 6, 8, 1, 4, 2, 3, 1, 2, 6, 8, 9, 0, 9, 9, 1, 6, 3, 5, 9, 1, 2, 6, 3, 8, 1, 0, 0, 8, 7, 1, 1, 2, 5, 2, 2, 1, 6, 7, 0, 1, 4, 6, 4, 0, 5, 1, 4, 7, 3, 2, 1, 8, 3, 4, 8, 6, 9, 3, 6, 6, 9, 3, 6, 9, 2, 0, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The larger solution is of course 3.
Also, the limit of infinite tetration a^a^...^a of a=3^(1/3) (=A002581), i.e., lim_{n>oo} x(n) where x(n+1)=a^x(n), x(1)=a.  M. F. Hasler, Nov 03 2013
The constant is transcendental (VassilevMissana, p. 23).  Peter Bala, Jan 01 2014


LINKS

Table of n, a(n) for n=1..105.
M. VassilevMissana, Some results on infinite power towers, Notes on Number Theory and Discrete Mathematics, Vol. 16 (2010) No. 3, 1824


EXAMPLE

2.47805268028830241189373651689...


MATHEMATICA

RealDigits[ 3*ProductLog[ Log[3]/3 ] / Log[3], 10, 105] // First (* JeanFrançois Alcover, Mar 05 2013 *)


PROG

(PARI) solve(x=2, exp(1), 3^xx^3)


CROSSREFS

Sequence in context: A010759 A063034 A094541 * A237199 A092577 A182842
Adjacent sequences: A166925 A166926 A166927 * A166929 A166930 A166931


KEYWORD

cons,nonn


AUTHOR

Franklin T. AdamsWatters, Oct 23 2009


STATUS

approved



