login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166931
Numbers n with property that n mod k is k-1 for all k = 2..9.
1
2519, 5039, 7559, 10079, 12599, 15119, 17639, 20159, 22679, 25199, 27719, 30239, 32759, 35279, 37799, 40319, 42839, 45359, 47879, 50399, 52919, 55439, 57959, 60479, 62999, 65519, 68039, 70559, 73079, 75599, 78119, 80639, 83159, 85679
OFFSET
1,1
FORMULA
a(n) = 2519 + n*2520.
From G. C. Greubel, May 28 2016: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (2519 + x)/(1-x)^2.
E.g.f.: (2519 + 2520*x)*exp(x). (End)
MAPLE
isA166931 := proc(n) for k from 2 to 9 do if n mod k <> k-1 then return false; end if; end do; true; end proc: for n from 1 to 500000 do if isA166931(n) then printf("%d, ", n) ; end if; end do ; # R. J. Mathar, Nov 02 2009
MATHEMATICA
Select[Range[90000], And@@Table[Mod[#, k]==k-1, {k, 2, 9}]&] (* Harvey P. Dale, Jun 14 2011 *)
LinearRecurrence[{2, -1}, {2519, 5039}, 50] (* G. C. Greubel, May 28 2016 *)
CROSSREFS
Sequence in context: A250694 A250679 A145534 * A131662 A068352 A175754
KEYWORD
nonn,easy
AUTHOR
Luc Comeau-Montasse, Oct 23 2009
EXTENSIONS
Edited by N. J. A. Sloane, Oct 25 2009
STATUS
approved