login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131662
Numbers n where either n or n+1 is divisible by the numbers from 1 to 12.
1
2519, 11879, 13320, 14399, 15840, 25200, 27719, 27720, 30239, 39599, 41040, 42119, 43560, 52920, 55439, 55440, 57959, 67319, 68760, 69839, 71280, 80640, 83159, 83160, 85679, 95039, 96480, 97559, 99000, 108360, 110879, 110880, 113399, 122759
OFFSET
1,1
COMMENTS
Equivalent to numbers n where either n or n+1 is divisible by the numbers from 7 to 12. n is a term if n or n+1 is a multiple of 27720. - Chai Wah Wu, Jun 15 2020
FORMULA
Conjectures from Colin Barker, Jun 15 2020: (Start)
G.f.: x*(2519 + 9360*x + 1441*x^2 + 1079*x^3 + 1441*x^4 + 9360*x^5 + 2519*x^6 + x^7) / ((1 - x)^2*(1 + x)*(1 + x^2)*(1 + x^4)).
a(n) = a(n-1) + a(n-8) - a(n-9) for n>9. (End)
EXAMPLE
2519 = 11*229 and 2520 = 2^3*3^2*5*7; that is, 2520 is divisible by all number from 1 to 12 except 11, while 2519 is divisible by 11.
MATHEMATICA
Select[Range[150000], Mod[ #, 8]*Mod[ # + 1, 8] == 0 && Mod[ #, 9]*Mod[ # + 1, 9] == 0 && Mod[ #, 5]*Mod[ # + 1, 5] == 0 && Mod[ #, 7]*Mod[ # + 1, 7] == 0 && Mod[ #, 8]*Mod[ # + 1, 8] == 0 && Mod[ #, 12]*Mod[ # + 1, 12] == 0 && Mod[ #, 10]*Mod[ # + 1, 10] == 0 && Mod[ #, 11]*Mod[ # + 1, 11] == 0 &]
PROG
(Python)
A131662_list, n = [], 12
while len(A131662_list) < 10000:
for i in range(7, 12):
if (n-1) % i and n % i:
break
else:
A131662_list.append(n-1)
for i in range(7, 12):
if n % i and (n+1) % i:
break
else:
A131662_list.append(n)
n += 12 # Chai Wah Wu, Jun 15 2020
CROSSREFS
Sequence in context: A250679 A145534 A166931 * A068352 A175754 A068547
KEYWORD
nonn,easy
AUTHOR
Tanya Khovanova, Sep 13 2007
STATUS
approved