login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131660
Positions at which the sum of the digits of e up to that point equals the sum of the digits of Pi up to that point.
1
218, 241, 264, 269, 280, 287, 354, 1159, 1836, 1871, 1872, 1886, 1891, 1892, 1914, 5023, 5026, 5039, 9165, 9170, 9171, 9180, 15166, 17909, 91192, 91194, 91277, 91289, 91290, 91293, 92029, 92031, 92033, 92038, 93913, 93927, 93928, 97369, 97839
OFFSET
1,1
COMMENTS
Numbers n such that A046974(n) = A046975(n). - Robert G. Wilson v, Sep 16 2007
LINKS
Eric Weisstein's World of Mathematics, e.
Eric Weisstein's World of Mathematics, PI.
EXAMPLE
a(1)=218 because the sum of the first 218 digits of e (including the initial 2) equals 987. That is the same result for the first 218 digits of Pi (including the initial 3).
MATHEMATICA
de = First@ RealDigits[E, 10, 10^5]; dse = 0; dpi = First@ RealDigits[Pi, 10, 10^5]; dspi = 0; lst = {}; Do[ dse = dse + de[[n]]; dspi = dspi + dpi[[n]]; If[dse == dspi, AppendTo[lst, n]; Print@n], {n, 10^5}] (* Robert G. Wilson v, Sep 16 2007 *)
Module[{nn=100000, ed, pd}, ed=Accumulate[RealDigits[E, 10, nn][[1]]]; pd= Accumulate[ RealDigits[Pi, 10, nn][[1]]]; Flatten[Position[Thread[ {ed, pd}], _?(#[[1]]==#[[2]]&), {1}, Heads->False]]] (* Harvey P. Dale, Feb 18 2015 *)
CROSSREFS
Sequence in context: A038662 A121379 A171404 * A260496 A038595 A045239
KEYWORD
base,nonn
AUTHOR
Sergio Pimentel, Sep 13 2007
EXTENSIONS
More terms from Robert G. Wilson v, Sep 16 2007
a(6) corrected by N. J. A. Sloane, Nov 23 2007
STATUS
approved