login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the surface area of a pentakis dodecahedron with unit shorter edge length.
5

%I #10 Dec 20 2024 02:49:05

%S 2,7,9,3,5,2,4,9,6,0,0,7,0,0,7,9,3,1,0,5,8,1,0,1,9,1,2,7,9,9,6,3,6,8,

%T 0,7,0,5,2,5,7,7,8,6,1,0,9,0,7,3,6,2,6,2,5,3,5,8,6,5,9,8,4,3,0,7,7,6,

%U 1,1,3,9,5,8,0,3,1,2,7,3,3,1,2,7,0,1,6,9,7,5

%N Decimal expansion of the surface area of a pentakis dodecahedron with unit shorter edge length.

%C The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.

%H Paolo Xausa, <a href="/A379132/b379132.txt">Table of n, a(n) for n = 2..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentakisDodecahedron.html">Pentakis Dodecahedron</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentakis_dodecahedron">Pentakis dodecahedron</a>.

%F Equals (5/3)*sqrt((421 + 63*sqrt(5))/2) = (5/3)*sqrt((421 + 63*A002163)/2).

%e 27.93524960070079310581019127996368070525778610907...

%t First[RealDigits[5/3*Sqrt[(421 + 63*Sqrt[5])/2], 10, 100]] (* or *)

%t First[RealDigits[PolyhedronData["PentakisDodecahedron", "SurfaceArea"], 10, 100]]

%Y Cf. A379133 (volume), A379134 (inradius), A379135 (midradius), A379136 (dihedral angle).

%Y Cf. A377750 (surface area of a truncated icosahedron with unit edge length).

%Y Cf. A002163.

%K nonn,cons,easy,new

%O 2,1

%A _Paolo Xausa_, Dec 16 2024