login
A379133
Decimal expansion of the volume of a pentakis dodecahedron with unit shorter edge length.
7
1, 3, 4, 5, 8, 5, 6, 9, 3, 6, 6, 3, 1, 8, 7, 1, 4, 2, 2, 3, 6, 4, 2, 9, 6, 4, 1, 2, 7, 5, 3, 9, 1, 5, 3, 5, 9, 5, 2, 7, 9, 9, 2, 4, 8, 5, 9, 7, 6, 2, 2, 4, 2, 0, 9, 8, 1, 6, 2, 8, 3, 7, 6, 5, 7, 6, 7, 5, 4, 1, 9, 8, 8, 0, 6, 8, 6, 8, 2, 2, 5, 6, 7, 4, 1, 1, 1, 6, 1, 1
OFFSET
2,2
COMMENTS
The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.
FORMULA
Equals (5/36)*(41 + 25*sqrt(5)) = (5/36)*(41 + 25*A002163).
EXAMPLE
13.458569366318714223642964127539153595279924859762...
MATHEMATICA
First[RealDigits[5/36*(41 + 25*Sqrt[5]), 10, 100]] (* or *)
First[RealDigits[PolyhedronData["PentakisDodecahedron", "Volume"], 10, 100]]
PROG
(PARI) (41 + 25*sqrt(5))*5/36 \\ Charles R Greathouse IV, Feb 05 2025
CROSSREFS
Cf. A379132 (surface area), A379134 (inradius), A379135 (midradius), A379136 (dihedral angle).
Cf. A377751 (volume of a truncated icosahedron with unit edge length).
Cf. A002163.
Sequence in context: A269719 A214626 A143593 * A364089 A028267 A364063
KEYWORD
nonn,cons,easy,changed
AUTHOR
Paolo Xausa, Dec 16 2024
STATUS
approved