Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 20 2024 02:49:19
%S 1,3,4,5,8,5,6,9,3,6,6,3,1,8,7,1,4,2,2,3,6,4,2,9,6,4,1,2,7,5,3,9,1,5,
%T 3,5,9,5,2,7,9,9,2,4,8,5,9,7,6,2,2,4,2,0,9,8,1,6,2,8,3,7,6,5,7,6,7,5,
%U 4,1,9,8,8,0,6,8,6,8,2,2,5,6,7,4,1,1,1,6,1,1
%N Decimal expansion of the volume of a pentakis dodecahedron with unit shorter edge length.
%C The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.
%H Paolo Xausa, <a href="/A379133/b379133.txt">Table of n, a(n) for n = 2..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PentakisDodecahedron.html">Pentakis Dodecahedron</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Pentakis_dodecahedron">Pentakis dodecahedron</a>.
%F Equals (5/36)*(41 + 25*sqrt(5)) = (5/36)*(41 + 25*A002163).
%e 13.458569366318714223642964127539153595279924859762...
%t First[RealDigits[5/36*(41 + 25*Sqrt[5]), 10, 100]] (* or *)
%t First[RealDigits[PolyhedronData["PentakisDodecahedron", "Volume"], 10, 100]]
%Y Cf. A379132 (surface area), A379134 (inradius), A379135 (midradius), A379136 (dihedral angle).
%Y Cf. A377751 (volume of a truncated icosahedron with unit edge length).
%Y Cf. A002163.
%K nonn,cons,easy,new
%O 2,2
%A _Paolo Xausa_, Dec 16 2024