login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378816
Expansion of 2*(x - 1)^3/(3*x^3 - 5*x^2 + x + 1 + sqrt(-(x - 1)^3*(x + 1)^2*(3*x + 1)))
3
-1, 4, -11, 30, -83, 232, -654, 1856, -5296, 15180, -43675, 126062, -364863, 1058552, -3077533, 8963862, -26151753, 76409052, -223544241, 654790218, -1920055017, 5635816776, -16557539124, 48685404516, -143264248974, 421879104836, -1243160223829, 3665516301186
OFFSET
0,2
COMMENTS
Binomial transform of A057552(n)*(-1)^(n+1).
FORMULA
G.f. A(x) satisfies: (-3*x^3 - x^2)*A(x)^2 + (3*x^3 - 5*x^2 + x + 1)*A(x) + (-x^3 + x*y^2 - x*y + 1) = 0.
a(n) = Limit_{k->oo} (A378783(k, k-n) - A378783(k, k-n-1)).
a(n) = A025566(n+1)+A025566(n+2)*(-1)^(n+1), for n > 0.
a(n) = Sum_{k=1..n+1} binomial(n, k-1)*(-1)^k*Sum_{m=0..k-1} binomial(2*m+2, m).
PROG
(PARI)
a(n) = sum(k=1, n+1, binomial(n, k-1)*(-1)^k*sum(m=0, k-1, binomial(2*m+2, m)))
CROSSREFS
Cf. A025566, A057552, A378783, A378816 ( Hankel sequence transform ).
Sequence in context: A019496 A021006 A078141 * A090327 A183118 A183125
KEYWORD
sign,new
AUTHOR
Thomas Scheuerle, Dec 08 2024
STATUS
approved