login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 2*(x - 1)^3/(3*x^3 - 5*x^2 + x + 1 + sqrt(-(x - 1)^3*(x + 1)^2*(3*x + 1)))
3

%I #11 Dec 21 2024 00:49:56

%S -1,4,-11,30,-83,232,-654,1856,-5296,15180,-43675,126062,-364863,

%T 1058552,-3077533,8963862,-26151753,76409052,-223544241,654790218,

%U -1920055017,5635816776,-16557539124,48685404516,-143264248974,421879104836,-1243160223829,3665516301186

%N Expansion of 2*(x - 1)^3/(3*x^3 - 5*x^2 + x + 1 + sqrt(-(x - 1)^3*(x + 1)^2*(3*x + 1)))

%C Binomial transform of A057552(n)*(-1)^(n+1).

%F G.f. A(x) satisfies: (-3*x^3 - x^2)*A(x)^2 + (3*x^3 - 5*x^2 + x + 1)*A(x) + (-x^3 + x*y^2 - x*y + 1) = 0.

%F a(n) = Limit_{k->oo} (A378783(k, k-n) - A378783(k, k-n-1)).

%F a(n) = A025566(n+1)+A025566(n+2)*(-1)^(n+1), for n > 0.

%F a(n) = Sum_{k=1..n+1} binomial(n, k-1)*(-1)^k*Sum_{m=0..k-1} binomial(2*m+2, m).

%o (PARI)

%o a(n) = sum(k=1, n+1, binomial(n, k-1)*(-1)^k*sum(m=0, k-1, binomial(2*m+2, m)))

%Y Cf. A025566, A057552, A378783, A378816 ( Hankel sequence transform ).

%K sign

%O 0,2

%A _Thomas Scheuerle_, Dec 08 2024