login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378146
Primes p such that 16*p^4 + 1 is prime.
3
2, 3, 17, 23, 37, 41, 53, 59, 71, 97, 127, 139, 167, 233, 263, 277, 283, 379, 389, 457, 521, 563, 571, 601, 619, 661, 691, 743, 797, 809, 811, 823, 853, 859, 877, 967, 971, 997, 1051, 1063, 1103, 1187, 1277, 1289, 1321, 1367, 1399, 1433, 1451, 1499
OFFSET
1,1
FORMULA
a(n) >> n log^2 n. - Charles R Greathouse IV, Nov 17 2024
MATHEMATICA
Select[Prime[Range[250]], PrimeQ[16*#^4 + 1] &] (* Amiram Eldar, Nov 17 2024 *)
PROG
(Magma) [p: p in PrimesUpTo(1500) | IsPrime(16*p^4+1)];
(PARI) list(lim)=my(v=List()); forprime(p=2, lim, if(isprime(16*p^4+1), listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Nov 17 2024
CROSSREFS
Primes p such that (2*p)^(2^k) + 1 is prime: A005384 (k = 0), A052291 (k = 1), this sequence (k = 2).
Sequence in context: A045343 A019388 A228198 * A023214 A225946 A095688
KEYWORD
nonn
AUTHOR
STATUS
approved