OFFSET
0,5
FORMULA
T(n, k) = binomial(2*n-k, n) * (n*(3*k+1) - 2*k*(k+1)) / ((2*n-k) * (2*n-k-1)) if 0 <= k < n and 1 if k = n.
T(n, k) = T(n, k-1) - T(n-1, k-2) for 2 <= k <= n.
(-1)^(n-k) * T(n, k) is matrix inverse of A004070 (seen as a triangle).
Conjecture: Sum_{i=0..n-k} binomial(i+m-1, i) * T(n, i+k) = T(n+m, m+k) for m > 0.
Conjecture: Sum_{k=0..n} (1 + floor(k/2)) * T(n, k) = A000108(n+1).
G.f.: A(x, y) = (1 + x*C(x)) / (1 - y * x*C(x)), where C(x) is g.f. of A000108.
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
======================================================
0 : 1
1 : 1 1
2 : 1 2 1
3 : 2 4 3 1
4 : 5 10 8 4 1
5 : 14 28 23 13 5 1
6 : 42 84 70 42 19 6 1
7 : 132 264 222 138 68 26 7 1
8 : 429 858 726 462 240 102 34 8 1
9 : 1430 2860 2431 1573 847 385 145 43 9 1
etc.
PROG
(PARI) T(n, k)=if(k==n, 1, binomial(2*n-k, n)*(n*(3*k+1)-2*k*(k+1))/((2*n-k)*(2*n-k-1)))
CROSSREFS
KEYWORD
AUTHOR
Werner Schulte, Nov 17 2024
STATUS
approved