login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378145
Riordan triangle (1 + x * C(x), x * C(x)), where C(x) is g.f. of A000108.
0
1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 5, 10, 8, 4, 1, 14, 28, 23, 13, 5, 1, 42, 84, 70, 42, 19, 6, 1, 132, 264, 222, 138, 68, 26, 7, 1, 429, 858, 726, 462, 240, 102, 34, 8, 1, 1430, 2860, 2431, 1573, 847, 385, 145, 43, 9, 1, 4862, 9724, 8294, 5434, 3003, 1430, 583, 198, 53, 10, 1
OFFSET
0,5
FORMULA
T(n, k) = binomial(2*n-k, n) * (n*(3*k+1) - 2*k*(k+1)) / ((2*n-k) * (2*n-k-1)) if 0 <= k < n and 1 if k = n.
T(n, k) = T(n, k-1) - T(n-1, k-2) for 2 <= k <= n.
(-1)^(n-k) * T(n, k) is matrix inverse of A004070 (seen as a triangle).
Conjecture: Sum_{i=0..n-k} binomial(i+m-1, i) * T(n, i+k) = T(n+m, m+k) for m > 0.
Conjecture: Sum_{k=0..n} (1 + floor(k/2)) * T(n, k) = A000108(n+1).
G.f.: A(x, y) = (1 + x*C(x)) / (1 - y * x*C(x)), where C(x) is g.f. of A000108.
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
======================================================
0 : 1
1 : 1 1
2 : 1 2 1
3 : 2 4 3 1
4 : 5 10 8 4 1
5 : 14 28 23 13 5 1
6 : 42 84 70 42 19 6 1
7 : 132 264 222 138 68 26 7 1
8 : 429 858 726 462 240 102 34 8 1
9 : 1430 2860 2431 1573 847 385 145 43 9 1
etc.
PROG
(PARI) T(n, k)=if(k==n, 1, binomial(2*n-k, n)*(n*(3*k+1)-2*k*(k+1))/((2*n-k)*(2*n-k-1)))
CROSSREFS
Cf. A000108, A004070, A120588 (column 0), A068875 (column 1 and row sums), A000007 (alt. row sums).
Sequence in context: A339549 A179750 A091173 * A101897 A208058 A078142
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Nov 17 2024
STATUS
approved