login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091173
Triangle, read by rows, where the n-th row lists the coefficients of the polynomial of degree n, with root -1, that generates the n-th diagonal of this sequence.
3
1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 4, 10, 9, 4, 1, 10, 28, 30, 16, 5, 1, 30, 90, 108, 68, 25, 6, 1, 106, 328, 426, 304, 130, 36, 7, 1, 420, 1338, 1842, 1444, 700, 222, 49, 8, 1, 1818, 6024, 8706, 7320, 3930, 1404, 350, 64, 9, 1, 8530, 29626, 44736, 39700, 23110, 9150, 2548
OFFSET
0,5
COMMENTS
The leftmost column (A091174) is determined by the condition that the root of each row polynomial is -1. The next column is T(n,1)=A091175(n+1) (n>=0).
LINKS
FORMULA
T(n+k, k) = Sum_{j=0..n} T(n, j) * k^j, with T(0,0)=1, T(0,n)=1 and T(n,0) = -Sum_{j=1..n} T(n, j) * (-1)^j.
EXAMPLE
For n=3, k=2, T(n+k,k) = T(5,2) = 30 = (2) + (4)2 + (3)2^2 + (1)2^3.
For n=4, k=3, T(n+k,k) = T(7,3) = 304 = (4) + (10)3 + (9)3^2 + (4)3^3 + (1)3^4.
Rows begin with n=0:
1;
1, 1;
1, 2, 1;
2, 4, 3, 1;
4, 10, 9, 4, 1;
10, 28, 30, 16, 5, 1;
30, 90, 108, 68, 25, 6, 1;
106, 328, 426, 304, 130, 36, 7, 1;
420, 1338, 1842, 1444, 700, 222, 49, 8, 1;
1818, 6024, 8706, 7320, 3930, 1404, 350, 64, 9, 1;
8530, 29626, 44736, 39700, 23110, 9150, 2548, 520, 81, 10, 1;
43430, 158012, 248466, 230424, 142890, 61680, 18970, 4288, 738, 100, 11, 1;
240208, 909010, 1483398, 1429236, 931500, 431646, 144858, 35976, 6804, 1010, 121, 12, 1; ...
MATHEMATICA
T[0, _] = 1; T[n_, 0] := T[n, 0] = -Sum[T[n, j]*(-1)^j, {j, 1, n}]; T[n_, k_] := T[n, k] = Sum[T[n-k, j]*k^j, {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 21 2015 *)
PROG
(PARI) {T(n, k)=if(n==k, 1, if(n>k&k>0, sum(j=0, n-k, T(n-k, j)*k^j), if(k==0, -sum(j=1, n, T(n, j)*(-1)^j))))}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Sequence in context: A160001 A339549 A179750 * A378145 A101897 A208058
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 25 2003
STATUS
approved