login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101897
Triangle T, read by rows, such that column k equals column 0 of T^(k+1), where column 0 of T allows the n-th row sums to be zero for n>0 and where T^k is the k-th power of T as a lower triangular matrix.
4
1, -1, 1, 1, -2, 1, -2, 4, -3, 1, 5, -11, 9, -4, 1, -17, 38, -33, 16, -5, 1, 71, -162, 145, -74, 25, -6, 1, -357, 824, -753, 396, -140, 36, -7, 1, 2101, -4892, 4535, -2434, 885, -237, 49, -8, 1, -14203, 33286, -31185, 16982, -6295, 1730, -371, 64, -9, 1, 108609, -255824, 241621, -133012, 50001, -13992, 3073, -548, 81
OFFSET
0,5
COMMENTS
Column 0 forms A101900. Absolute row sums form A101901.
LINKS
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
FORMULA
T(n, k) = Sum_{j=0..n-k} T(n-k, j)*T(j+k-1, k-1) for n >= k > 0 with T(0, 0) = 1 and T(n, 0) = -Sum_{j=1, n} T(n, j) for n > 0.
EXAMPLE
Rows begin:
1;
-1, 1;
1, -2, 1;
-2, 4, -3, 1;
5, -11, 9, -4, 1;
-17, 38, -33, 16, -5, 1;
71, -162, 145, -74, 25, -6, 1;
-357, 824, -753, 396, -140, 36, -7, 1,
2101, -4892, 4535, -2434, 885, -237, 49, -8, 1;
-14203, 33286, -31185, 16982, -6295, 1730, -371, 64, -9, 1;
...
MATHEMATICA
t[n_, k_] := t[n, k] = If[k>n || n<0 || k<0, 0, If[k==n, 1, If[k==0, -Sum[t[n, j], {j, 1, n}], Sum[t[n-k, j]*t[j+k-1, k-1], {j, 0, n-k}]]]]; Table[t[n , k], {n, 0, 10}, {k, 0, n}] //Flatten (* Amiram Eldar, Nov 26 2018 *)
PROG
(PARI) {T(n, k)=if(k>n||n<0||k<0, 0, if(k==n, 1, if(k==0, -sum(j=1, n, T(n, j)), sum(j=0, n-k, T(n-k, j)*T(j+k-1, k-1)); )); )}
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul D. Hanna, Dec 20 2004
STATUS
approved