Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 19 2024 19:04:35
%S 1,-1,1,1,-2,1,-2,4,-3,1,5,-11,9,-4,1,-17,38,-33,16,-5,1,71,-162,145,
%T -74,25,-6,1,-357,824,-753,396,-140,36,-7,1,2101,-4892,4535,-2434,885,
%U -237,49,-8,1,-14203,33286,-31185,16982,-6295,1730,-371,64,-9,1,108609,-255824,241621,-133012,50001,-13992,3073,-548,81
%N Triangle T, read by rows, such that column k equals column 0 of T^(k+1), where column 0 of T allows the n-th row sums to be zero for n>0 and where T^k is the k-th power of T as a lower triangular matrix.
%C Column 0 forms A101900. Absolute row sums form A101901.
%H J.-L. Baril, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p178">Classical sequences revisited with permutations avoiding dotted pattern</a>, Electronic Journal of Combinatorics, 18 (2011), #P178.
%F T(n, k) = Sum_{j=0..n-k} T(n-k, j)*T(j+k-1, k-1) for n >= k > 0 with T(0, 0) = 1 and T(n, 0) = -Sum_{j=1, n} T(n, j) for n > 0.
%e Rows begin:
%e 1;
%e -1, 1;
%e 1, -2, 1;
%e -2, 4, -3, 1;
%e 5, -11, 9, -4, 1;
%e -17, 38, -33, 16, -5, 1;
%e 71, -162, 145, -74, 25, -6, 1;
%e -357, 824, -753, 396, -140, 36, -7, 1,
%e 2101, -4892, 4535, -2434, 885, -237, 49, -8, 1;
%e -14203, 33286, -31185, 16982, -6295, 1730, -371, 64, -9, 1;
%e ...
%t t[n_, k_] := t[n, k] = If[k>n || n<0 || k<0, 0, If[k==n, 1, If[k==0, -Sum[t[n, j], {j, 1, n}], Sum[t[n-k, j]*t[j+k-1, k-1], {j, 0, n-k}]]]]; Table[t[n ,k], {n,0,10}, {k, 0, n}] //Flatten (* _Amiram Eldar_, Nov 26 2018 *)
%o (PARI) {T(n,k)=if(k>n||n<0||k<0,0,if(k==n,1, if(k==0,-sum(j=1,n,T(n,j)), sum(j=0,n-k,T(n-k,j)*T(j+k-1,k-1));));)}
%Y Cf. A091351, A101900, A101901, A101898, A101899.
%K sign,tabl
%O 0,5
%A _Paul D. Hanna_, Dec 20 2004