login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows, where the n-th row lists the coefficients of the polynomial of degree n, with root -1, that generates the n-th diagonal of this sequence.
3

%I #14 Sep 21 2015 10:24:07

%S 1,1,1,1,2,1,2,4,3,1,4,10,9,4,1,10,28,30,16,5,1,30,90,108,68,25,6,1,

%T 106,328,426,304,130,36,7,1,420,1338,1842,1444,700,222,49,8,1,1818,

%U 6024,8706,7320,3930,1404,350,64,9,1,8530,29626,44736,39700,23110,9150,2548

%N Triangle, read by rows, where the n-th row lists the coefficients of the polynomial of degree n, with root -1, that generates the n-th diagonal of this sequence.

%C The leftmost column (A091174) is determined by the condition that the root of each row polynomial is -1. The next column is T(n,1)=A091175(n+1) (n>=0).

%H Paul D. Hanna, <a href="/A091173/b091173.txt">Table of n, a(n) for n = 0..1034</a>

%F T(n+k, k) = Sum_{j=0..n} T(n, j) * k^j, with T(0,0)=1, T(0,n)=1 and T(n,0) = -Sum_{j=1..n} T(n, j) * (-1)^j.

%e For n=3, k=2, T(n+k,k) = T(5,2) = 30 = (2) + (4)2 + (3)2^2 + (1)2^3.

%e For n=4, k=3, T(n+k,k) = T(7,3) = 304 = (4) + (10)3 + (9)3^2 + (4)3^3 + (1)3^4.

%e Rows begin with n=0:

%e 1;

%e 1, 1;

%e 1, 2, 1;

%e 2, 4, 3, 1;

%e 4, 10, 9, 4, 1;

%e 10, 28, 30, 16, 5, 1;

%e 30, 90, 108, 68, 25, 6, 1;

%e 106, 328, 426, 304, 130, 36, 7, 1;

%e 420, 1338, 1842, 1444, 700, 222, 49, 8, 1;

%e 1818, 6024, 8706, 7320, 3930, 1404, 350, 64, 9, 1;

%e 8530, 29626, 44736, 39700, 23110, 9150, 2548, 520, 81, 10, 1;

%e 43430, 158012, 248466, 230424, 142890, 61680, 18970, 4288, 738, 100, 11, 1;

%e 240208, 909010, 1483398, 1429236, 931500, 431646, 144858, 35976, 6804, 1010, 121, 12, 1; ...

%t T[0, _] = 1; T[n_, 0] := T[n, 0] = -Sum[T[n, j]*(-1)^j, {j, 1, n}]; T[n_, k_] := T[n, k] = Sum[T[n-k, j]*k^j, {j, 0, n-k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 21 2015 *)

%o (PARI) {T(n,k)=if(n==k,1,if(n>k&k>0,sum(j=0,n-k,T(n-k,j)*k^j),if(k==0,-sum(j=1,n,T(n,j)*(-1)^j))))}

%o for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

%Y Cf. A091174, A091175.

%K nonn,tabl

%O 0,5

%A _Paul D. Hanna_, Dec 25 2003