login
A377789
Expansion of e.g.f. (1/x) * Series_Reversion( x/(1 - 2*log(1-x)) ).
2
1, 2, 10, 88, 1148, 20088, 442896, 11802096, 369132256, 13261156416, 538227938880, 24359100451200, 1216403663398656, 66440221207025664, 3940468338389603328, 252190997066643909120, 17324237625466992906240, 1271459220768570290626560, 99289436336361780797288448
OFFSET
0,2
FORMULA
a(n) = n! * Sum_{k=0..n} 2^k * |Stirling1(n,k)|/(n-k+1)!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x/(1-2*log(1-x)))/x))
(PARI) a(n) = n!*sum(k=0, n, 2^k*abs(stirling(n, k, 1))/(n-k+1)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 07 2024
STATUS
approved