login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377464
Number of connected pairs of subsets of [n] with each being a different size.
1
0, 0, 2, 12, 62, 290, 1292, 5579, 23606, 98490, 406862, 1668689, 6807704, 27663441, 112076057, 453031502, 1828018406, 7366128866, 29650536878, 119249689265, 479277846962, 1925216817095, 7729973578307, 31025341749680, 124486445913728, 499362094315865
OFFSET
0,3
COMMENTS
Empirically, a(A075930(n)) == 1 (mod 2).
FORMULA
a(n) = Sum_{i=0..n-2} binomial(n,i) * Sum_{j=i+1..n-1} (binomial(n,j) - binomial(i,n-j)).
EXAMPLE
a(3) = 12 counts the pairs: {{1,2},{1}}, {{1,2},{2}}, {{1,3},{1}}, {{1,3},{3}}, {{2,3},{2}}, {{2,3},{3}}, {{1,2,3},{1,2}}, {{1,2,3},{1,3}}, {{1,2,3},{2,3}}, {{1,2,3},{1}}, {{1,2,3},{2}}, {{1,2,3},{3}}.
PROG
(PARI)
A377464(n) = {sum(i=0, n-2, binomial(n, i)*sum(j=i+1, n-1, binomial(n, j)-binomial(i, n-j)))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Tyler Rascoe, Oct 29 2024
STATUS
approved