login
A377464
Number of connected pairs of subsets of [n] with each being a different size.
1
0, 0, 2, 12, 62, 290, 1292, 5579, 23606, 98490, 406862, 1668689, 6807704, 27663441, 112076057, 453031502, 1828018406, 7366128866, 29650536878, 119249689265, 479277846962, 1925216817095, 7729973578307, 31025341749680, 124486445913728, 499362094315865
OFFSET
0,3
COMMENTS
Empirically, a(A075930(n)) == 1 (mod 2).
FORMULA
a(n) = Sum_{i=0..n-2} binomial(n,i) * Sum_{j=i+1..n-1} (binomial(n,j) - binomial(i,n-j)).
EXAMPLE
a(3) = 12 counts the pairs: {{1,2},{1}}, {{1,2},{2}}, {{1,3},{1}}, {{1,3},{3}}, {{2,3},{2}}, {{2,3},{3}}, {{1,2,3},{1,2}}, {{1,2,3},{1,3}}, {{1,2,3},{2,3}}, {{1,2,3},{1}}, {{1,2,3},{2}}, {{1,2,3},{3}}.
PROG
(PARI)
A377464(n) = {sum(i=0, n-2, binomial(n, i)*sum(j=i+1, n-1, binomial(n, j)-binomial(i, n-j)))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Tyler Rascoe, Oct 29 2024
STATUS
approved