login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377461
Number of ranked labeled trees compatible with the 2-leaf perfect phylogeny of sample size n that possesses the largest number of compatible ranked labeled trees.
0
1, 1, 2, 9, 54, 540, 6480, 113400, 2268000, 61236000, 1837080000, 70727580000, 2970558360000, 154469034720000, 8650265944320000, 583892951241600000, 42040292489395200000, 3573424861598592000000, 321608237543873280000000, 33608060823334757760000000
OFFSET
2,3
COMMENTS
The 2-leaf perfect phylogeny of sample size n that possesses the largest number of compatible ranked labeled trees is (floor(n/2), ceiling(n/2)); a(n) is the number of ranked labeled trees for this perfect phylogeny.
LINKS
J. A. Palacios, A. Bhaskar, F. Disanto and N. A. Rosenberg, Enumeration of binary trees compatible with a perfect phylogeny, J. Math. Biol. 84 (2022), 54.
FORMULA
a(n) = ((n-2)! / ((floor(n/2)-1)! (n-1-floor(n/2))!)) * (floor(n/2))! (floor(n/2)-1)! (ceiling(n/2))! (ceiling(n/2)-1)! / (2^(floor(n/2)-1) 2^(ceiling(n/2)-1)).
a(n) = A001405(n-2)*A006472(floor(n/2))*A006472(ceiling(n/2)).
a(2n) = A306266(n).
MATHEMATICA
a[n_] := ((n - 2)!/((Floor[n/2] - 1)! (n - 1 - Floor[n/2])!)) Product[Binomial[i, 2], {i, 2, Floor[n/2]}] Product[Binomial[i, 2], {i, 2, Ceiling[n/2]}].
a[n_] := ((n - 2)!/((Floor[n/2] - 1)! (n - 1 - Floor[n/2])!)) Floor[n/2]! (Floor[n/2] - 1)! Ceiling[n/2]! (Ceiling[n/2] - 1)! /(2^(Floor[n/2] - 1) 2^(Ceiling[n/2] - 1)).
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Noah A Rosenberg, Jan 03 2025
STATUS
approved