OFFSET
2,3
COMMENTS
The 2-leaf perfect phylogeny of sample size n that possesses the largest number of compatible ranked labeled trees is (floor(n/2), ceiling(n/2)); a(n) is the number of ranked labeled trees for this perfect phylogeny.
LINKS
J. A. Palacios, A. Bhaskar, F. Disanto and N. A. Rosenberg, Enumeration of binary trees compatible with a perfect phylogeny, J. Math. Biol. 84 (2022), 54.
FORMULA
MATHEMATICA
a[n_] := ((n - 2)!/((Floor[n/2] - 1)! (n - 1 - Floor[n/2])!)) Product[Binomial[i, 2], {i, 2, Floor[n/2]}] Product[Binomial[i, 2], {i, 2, Ceiling[n/2]}].
a[n_] := ((n - 2)!/((Floor[n/2] - 1)! (n - 1 - Floor[n/2])!)) Floor[n/2]! (Floor[n/2] - 1)! Ceiling[n/2]! (Ceiling[n/2] - 1)! /(2^(Floor[n/2] - 1) 2^(Ceiling[n/2] - 1)).
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Noah A Rosenberg, Jan 03 2025
STATUS
approved