login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A377463
Numbers that are not the sum of distinct powers of 4.
1
2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78
OFFSET
1,1
COMMENTS
Complement of the Moser-de Bruijn sequence (A000695).
Numbers whose base 4 digits contain either 2 or 3.
PROG
(Python)
from gmpy2 import digits
def A377463(n):
def f(x):
s = digits(x, 4)
for i in range(l:=len(s)):
if s[i]>'1':
break
else:
return n+int(s, 2)
return n-1+(int(s[:i] or '0', 2)+1<<l-i)
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m
(Python)
from itertools import count, islice
from gmpy2 import digits
def is_A377463(n): return max(digits(n, 4))>'1'
def A377463_gen(): # generator of terms
return filter(is_A377463, count(1))
A377463_list = list(islice(A377463_gen(), 50))
CROSSREFS
Cf. A000695, A074940 (base 3 analog), A136399 (base 10 analog).
Sequence in context: A225755 A126388 A039247 * A371292 A039189 A039141
KEYWORD
nonn,easy
AUTHOR
Chai Wah Wu, Oct 29 2024
STATUS
approved