login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377457
Numbers k such that k and k+1 are both terms in A377386.
2
1, 12563307224, 15897851550, 30412355999, 37706988600, 52576459775, 67673545631, 118533901904, 244316235000, 297265003100, 332110595000, 340800265728, 349358409503, 375624917760, 378624889440, 416375389115, 450026519903, 561162864248, 596004199840, 728643460544
OFFSET
1,2
LINKS
EXAMPLE
12563307224 is a term since both 12563307224 and 12563307225 are in A377386: 12563307224/A034968(12563307224) = 369509036, 369509036/A034968(369509036) = 9723922 and 9723922/A034968(9723922) = 373997 are integers, and 12563307225/A034968(12563307225) = 358951635, 358951635/A034968(358951635) = 7976703 and 7976703/A034968(7976703) = 257313 are integers.
PROG
(PARI) fdigsum(n) = {my(k = n, m = 2, r, s = 0); while([k, r] = divrem(k, m); k != 0 || r != 0, s += r; m++); s; }
is1(k) = {my(f = fdigsum(k), f2, m); if(k % f, return(0)); m = k/f; f2 = fdigsum(m); !(m % f2) && !((m/f2) % fdigsum(m/f2)); }
lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2); }
CROSSREFS
Cf. A034968.
Subsequence of A118363, A328205, A377385, A377386 and A377455.
Analogous sequences: A376795 (binary), A377272 (Zeckendorf).
Sequence in context: A135496 A287747 A113642 * A329417 A216866 A034657
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Oct 29 2024
STATUS
approved