login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329417
Carmichael numbers m that have at least 3 prime factors p such that (p-1)*p^2 divides m-p.
3
12876480001, 102293818705, 162303632569, 639554081761, 783962120161, 3224063844001, 4553777859841, 10276904735461, 40867660260505, 51496980091921, 51641004415105, 52412615611201, 52933062609505, 73892907966241, 97388953462801, 107862864807061, 182236335107905, 210587050134721
OFFSET
1,1
COMMENTS
In 1950, Giuga conjectured that there are no composite numbers n for which 1^(n-1) + 2^(n-1) + ... + (n-1)^(n-1) == -1 (mod n). If such a number exists, then it must be a Carmichael number n such that (p-1)*p^2 divides n-p for every prime p dividing n.
REFERENCES
Giuseppe Giuga, Su una presumibile proprietà caratteristica dei numeri primi (in Italian), Istituto Lombardo Scienze e Lettere, Rendiconti di Classe di scienze matematiche e naturali, Vol. 83 (1950), pp. 511-528.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..8950 (terms below 10^22 calculated using data from Claude Goutier; terms 1..854 from Daniel Suteu)
Takashi Agoh, On Giuga's conjecture, Manuscripta Mathematica, Vol. 87, No. 1 (1995), pp. 501-510.
William D. Banks, C. Wesley Nevans and Carl Pomerance, A remark on Giuga's conjecture and Lehmer's totient problem, Albanian Journal of Mathematics, Vol. 3, No. 2 (2009), pp. 81-85; alternative link.
Eric Weisstein's World of Mathematics, Giuga's Conjecture.
EXAMPLE
m = 12876480001 is a term because it is a Carmichael number, and it has at least 3 prime factors p, {7, 11, 37}, such that (p-1)*p^2 divides m-p.
PROG
(Perl) use bigint; use ntheory ':all'; sub isok { my $m = $_[0]; is_carmichael($m) && (grep { ($m-$_) % (($_-1)*$_*$_) == 0 } factor($m)) >= 3 };
CROSSREFS
Cf. A002997.
Sequence in context: A287747 A113642 A377457 * A216866 A034657 A204096
KEYWORD
nonn
AUTHOR
Amiram Eldar and Daniel Suteu, Nov 29 2019
STATUS
approved