login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Carmichael numbers m that have at least 3 prime factors p such that (p-1)*p^2 divides m-p.
3

%I #28 Apr 22 2024 14:28:20

%S 12876480001,102293818705,162303632569,639554081761,783962120161,

%T 3224063844001,4553777859841,10276904735461,40867660260505,

%U 51496980091921,51641004415105,52412615611201,52933062609505,73892907966241,97388953462801,107862864807061,182236335107905,210587050134721

%N Carmichael numbers m that have at least 3 prime factors p such that (p-1)*p^2 divides m-p.

%C In 1950, Giuga conjectured that there are no composite numbers n for which 1^(n-1) + 2^(n-1) + ... + (n-1)^(n-1) == -1 (mod n). If such a number exists, then it must be a Carmichael number n such that (p-1)*p^2 divides n-p for every prime p dividing n.

%D Giuseppe Giuga, Su una presumibile proprietà caratteristica dei numeri primi (in Italian), Istituto Lombardo Scienze e Lettere, Rendiconti di Classe di scienze matematiche e naturali, Vol. 83 (1950), pp. 511-528.

%H Amiram Eldar, <a href="/A329417/b329417.txt">Table of n, a(n) for n = 1..8950</a> (terms below 10^22 calculated using data from Claude Goutier; terms 1..854 from Daniel Suteu)

%H Takashi Agoh, <a href="https://doi.org/10.1007/BF02570490">On Giuga's conjecture</a>, Manuscripta Mathematica, Vol. 87, No. 1 (1995), pp. 501-510.

%H William D. Banks, C. Wesley Nevans and Carl Pomerance, <a href="http://albanian-j-math.com/archives/2009-11.pdf">A remark on Giuga's conjecture and Lehmer's totient problem</a>, Albanian Journal of Mathematics, Vol. 3, No. 2 (2009), pp. 81-85; <a href="https://math.dartmouth.edu/~carlp/Carmichael_giuga.pdf">alternative link</a>.

%H Claude Goutier, <a href="http://www-labs.iro.umontreal.ca/~goutier/OEIS/A055553/">Compressed text file carm10e22.gz containing all the Carmichael numbers up to 10^22</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GiugasConjecture.html">Giuga's Conjecture</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Agoh%E2%80%93Giuga_conjecture">Agoh-Giuga conjecture</a>.

%H <a href="/index/Ca#Carmichael">Index entries for sequences related to Carmichael numbers</a>.

%e m = 12876480001 is a term because it is a Carmichael number, and it has at least 3 prime factors p, {7, 11, 37}, such that (p-1)*p^2 divides m-p.

%o (Perl) use bigint; use ntheory ':all'; sub isok { my $m = $_[0]; is_carmichael($m) && (grep { ($m-$_) % (($_-1)*$_*$_) == 0 } factor($m)) >= 3 };

%Y Cf. A002997.

%K nonn

%O 1,1

%A _Amiram Eldar_ and _Daniel Suteu_, Nov 29 2019