login
A377272
Numbers k such that k and k+1 are both terms in A377210.
3
1, 2, 3, 4, 5, 12, 47375, 2310399, 3525200, 6506367, 9388224, 17613504, 29373839, 41534800, 48191759, 48344120, 66927384, 68094999, 71982999, 92547279, 95497919, 110146959, 110395439, 126123920, 148865535, 152546030, 154451583, 171570069, 193628799, 232058519
OFFSET
1,2
LINKS
EXAMPLE
47375 is a term since both 47375 and 47376 are in A377210: 47375/A007895(47375) = 9475, 9475/A007895(9475) = 1895 and 1895/A007895(1895) = 379 are integers, and 47376/A007895(47376) = 15792, 15792/A007895(15792) = 3948 and 3948/A007895(3948) = 1316 are integers.
MATHEMATICA
zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
q[k_] := q[k] = Module[{z = zeck[k], z2, m, n}, IntegerQ[m = k/z] && Divisible[m, z2 = zeck[m]] && Divisible[n = m/z2, zeck[n]]]; Select[Range[50000], q[#] && q[#+1] &]
PROG
(PARI) zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895
is1(k) = {my(z = zeck(k), z2, m); if(k % z, return(0)); m = k/z; z2 = zeck(m); !(m % z2) && !((m/z2) % zeck(m/z2)); }
lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2); }
CROSSREFS
Cf. A007895, A376795 (binary analog).
Subsequence of A328208, A328209, A377210 and A377271.
Sequence in context: A165303 A109744 A377271 * A065635 A325693 A367140
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Oct 22 2024
STATUS
approved