login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377271
Numbers k such that k and k+1 are both terms in A377209.
4
1, 2, 3, 4, 5, 12, 89, 1824, 3024, 7024, 15084, 17184, 18935, 22624, 28657, 29424, 31464, 37024, 38835, 40032, 42679, 44975, 47375, 66744, 66815, 78219, 89495, 107456, 112175, 119744, 144599, 148519, 169883, 171941, 172025, 188208, 207935, 226624, 244404, 248255
OFFSET
1,2
LINKS
EXAMPLE
1824 is a term since both 1824 and 1825 are in A377209: 1824/A007895(1824) = 304 and 304/A007895(304) = 76 are integers, and 1825/A007895(1825) = 365 and 365/A007895(365) = 73 are integers.
MATHEMATICA
zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
q[k_] := q[k] = Module[{z = zeck[k]}, Divisible[k, z] && Divisible[k/z, zeck[k/z]]]; Select[Range[250000], q[#] && q[#+1] &]
PROG
(PARI) zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895
is1(k) = {my(z = zeck(k)); !(k % z) && !((k/z) % zeck(k/z)); }
lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2); }
CROSSREFS
Cf. A007895, A376793 (binary analog).
Subsequence of A328208, A328209 and A377209.
Subsequences: A377272, A377273.
Sequence in context: A175807 A165303 A109744 * A377272 A065635 A325693
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Oct 22 2024
STATUS
approved