login
A377271
Numbers k such that k and k+1 are both terms in A377209.
4
1, 2, 3, 4, 5, 12, 89, 1824, 3024, 7024, 15084, 17184, 18935, 22624, 28657, 29424, 31464, 37024, 38835, 40032, 42679, 44975, 47375, 66744, 66815, 78219, 89495, 107456, 112175, 119744, 144599, 148519, 169883, 171941, 172025, 188208, 207935, 226624, 244404, 248255
OFFSET
1,2
LINKS
EXAMPLE
1824 is a term since both 1824 and 1825 are in A377209: 1824/A007895(1824) = 304 and 304/A007895(304) = 76 are integers, and 1825/A007895(1825) = 365 and 365/A007895(365) = 73 are integers.
MATHEMATICA
zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
q[k_] := q[k] = Module[{z = zeck[k]}, Divisible[k, z] && Divisible[k/z, zeck[k/z]]]; Select[Range[250000], q[#] && q[#+1] &]
PROG
(PARI) zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s); \\ Charles R Greathouse IV at A007895
is1(k) = {my(z = zeck(k)); !(k % z) && !((k/z) % zeck(k/z)); }
lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2); }
CROSSREFS
Cf. A007895, A376793 (binary analog).
Subsequence of A328208, A328209 and A377209.
Subsequences: A377272, A377273.
Sequence in context: A175807 A165303 A109744 * A377272 A065635 A325693
KEYWORD
nonn,base
AUTHOR
Amiram Eldar, Oct 22 2024
STATUS
approved