login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A175807
A007318-perfect numbers.
6
2, 3, 4, 5, 12, 22, 26, 154
OFFSET
1,1
COMMENTS
See definition in comment to A175522. The definition is applied to the flattened view of the binomial coefficients with a single index, without regard to fact that A007318 is a triangle.
No more terms up to 10^6. - Michel Marcus, Feb 07 2016
EXAMPLE
Since A007318(1)+ A007318(2)+ A007318(3)+ A007318(4)+ A007318(6)=6= A007318(12), then 12 is in the sequence.
MAPLE
A007318 := proc(n) option remember; local t, r; t := 0 ; for r from 0 do if t+r+1 > n then return binomial(r, n-t) ; end if; t := t+r+1 ; end do: end proc:
isA175807 := proc(n) m := 0 ; for d in numtheory[divisors](n) minus {n} do m := m+A007318(d) ; end do; m = A007318(n) ; end proc:
for n from 1 do if isA175807(n) then printf("%d, \n", n); end if; end do: # R. J. Mathar, Dec 05 2010
PROG
(PARI) b(n) = {my(m = 1); while (m*(m+1)/2 < n, m++); if (! ispolygonal(n, 3), m--); binomial(m, n - m*(m+1)/2); }
isok(n) = sumdiv(n, d, (d<n)* b(d)) == b(n); \\ Michel Marcus, Feb 07 2016
CROSSREFS
KEYWORD
nonn,less,more
AUTHOR
Vladimir Shevelev, Dec 05 2010
STATUS
approved