OFFSET
0,4
COMMENTS
It is only a conjecture that the A(n, k) are always integers.
FORMULA
A(n + k, 2*k - 1) = A(k, 2*k-1) = 4^(k-1).
Let P_n(x) be the polynomial: Sum_{k=0..n} x^k*A180870(n, k). Let R_n(x) be the polynomial Product_{k=0..n} x-Roots(P_n, k)^m. A(n, k) = abs([x^1] R_n(x))/2^(m*(n-1)), for n > 0. - Thomas Scheuerle, Oct 07 2024
EXAMPLE
Array starts:
[0] 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... [A000004]
[1] 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... [A000012]
[2] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, ... [A000032]
[3] 3, 1, 5, 4, 13, 16, 38, 57, 117, 193, 370, 639, ... [A096975]
[4] 4, 1, 7, 4, 19, 16, 58, 64, 187, 247, 622, 925, ... [A094649]
[5] 5, 1, 9, 4, 25, 16, 78, 64, 257, 256, 874, 1013, ... [A189234]
[6] 6, 1, 11, 4, 31, 16, 98, 64, 327, 256, 1126, 1024, ... [A216605]
[7] 7, 1, 13, 4, 37, 16, 118, 64, 397, 256, 1378, 1024, ...
[8] 8, 1, 15, 4, 43, 16, 138, 64, 467, 256, 1630, 1024, ...
[9] 9, 1, 17, 4, 49, 16, 158, 64, 537, 256, 1882, 1024, ...
PROG
(C++) double gen(int n, int m) {
double s = 0, d = 1;
for(int i = 1; i <= m; i++) d *= 2;
for(int i = 1; i <= n; i++) {
double v = 1;
for(int j = 1; j <= m; j++) v *= cos((2 * i - 1) * M_PI / (2 * n + 1));
s += v * d;
}
return s;
}
(PARI) A(n, k) = 2^k*sum(j=1, n, (cos((2*j-1)*Pi/(2*n+1)))^k, x=0)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Cheng-Jun Li, Sep 25 2024
STATUS
approved