login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376495
E.g.f. satisfies A(x) = exp(x^3 * A(x)^3 / (1 - x)).
2
1, 0, 0, 6, 24, 120, 3240, 40320, 463680, 11491200, 248572800, 4869849600, 135896745600, 4017466252800, 113150157120000, 3765622699238400, 137549036072448000, 5019223860338688000, 199794776937044889600, 8636618647667288678400
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-3*x^3 / (1-x))/3 ).
a(n) = n! * Sum_{k=0..floor(n/3)} (3*k+1)^(k-1) * binomial(n-2*k-1,n-3*k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x^3/(1-x))/3)))
(PARI) a(n) = n!*sum(k=0, n\3, (3*k+1)^(k-1)*binomial(n-2*k-1, n-3*k)/k!);
CROSSREFS
Cf. A376475.
Sequence in context: A060249 A052557 A376516 * A376475 A357192 A357194
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 25 2024
STATUS
approved