login
A376495
E.g.f. satisfies A(x) = exp(x^3 * A(x)^3 / (1 - x)).
2
1, 0, 0, 6, 24, 120, 3240, 40320, 463680, 11491200, 248572800, 4869849600, 135896745600, 4017466252800, 113150157120000, 3765622699238400, 137549036072448000, 5019223860338688000, 199794776937044889600, 8636618647667288678400
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( -LambertW(-3*x^3 / (1-x))/3 ).
a(n) = n! * Sum_{k=0..floor(n/3)} (3*k+1)^(k-1) * binomial(n-2*k-1,n-3*k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x^3/(1-x))/3)))
(PARI) a(n) = n!*sum(k=0, n\3, (3*k+1)^(k-1)*binomial(n-2*k-1, n-3*k)/k!);
CROSSREFS
Cf. A376475.
Sequence in context: A060249 A052557 A376516 * A376475 A357192 A357194
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 25 2024
STATUS
approved