login
A376475
E.g.f. satisfies A(x) = exp( x^3*A(x)^3 / (1 - x*A(x)) ).
3
1, 0, 0, 6, 24, 120, 3240, 45360, 584640, 13668480, 322963200, 7224940800, 201040963200, 6254004556800, 197219089267200, 6845849673062400, 260976932536320000, 10410615332941824000, 441056225586706329600, 20015606466369626112000, 955852013167308601344000, 47944066629381635801088000
OFFSET
0,4
FORMULA
E.g.f.: (1/x) * Series_Reversion( x*exp(-x^3 / (1 - x)) ).
a(n) = n! * Sum_{k=0..floor(n/3)} (n+1)^(k-1) * binomial(n-2*k-1,n-3*k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n\3, (n+1)^(k-1)*binomial(n-2*k-1, n-3*k)/k!);
CROSSREFS
Cf. A293049.
Sequence in context: A052557 A376516 A376495 * A357192 A357194 A188232
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 24 2024
STATUS
approved