login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285037
Irregular triangle read by rows: T(n,k) is the number of primitive (period n) periodic palindromic structures using exactly k different symbols, 1 <= k <= n/2 + 1.
14
1, 0, 1, 0, 1, 0, 2, 1, 0, 3, 1, 0, 4, 5, 1, 0, 7, 6, 1, 0, 10, 18, 7, 1, 0, 14, 25, 10, 1, 0, 21, 63, 43, 10, 1, 0, 31, 90, 65, 15, 1, 0, 42, 202, 219, 85, 13, 1, 0, 63, 301, 350, 140, 21, 1, 0, 91, 650, 1058, 618, 154, 17, 1, 0, 123, 965, 1701, 1050, 266, 28, 1
OFFSET
1,7
COMMENTS
Permuting the symbols will not change the structure.
Equivalently, the number of n-bead aperiodic necklaces (Lyndon words) with exactly k symbols, up to permutation of the symbols, which when turned over are unchanged. When comparing with the turned over necklace a rotation is allowed but a permutation of the symbols is not.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
T(n, k) = Sum_{d | n} mu(n/d) * A285012(d, k).
EXAMPLE
Triangle starts:
1
0 1
0 1
0 2 1
0 3 1
0 4 5 1
0 7 6 1
0 10 18 7 1
0 14 25 10 1
0 21 63 43 10 1
0 31 90 65 15 1
0 42 202 219 85 13 1
0 63 301 350 140 21 1
0 91 650 1058 618 154 17 1
0 123 965 1701 1050 266 28 1
0 184 2016 4796 4064 1488 258 21 1
0 255 3025 7770 6951 2646 462 36 1
0 371 6220 21094 24914 12857 3222 410 26 1
0 511 9330 34105 42525 22827 5880 750 45 1
...
Example for n=6, k=2:
There are 6 inequivalent solutions to A285012(6,2) which are 001100, 010010, 000100, 001010, 001110, 010101. Of these, 010010 and 010101 have a period less than 6, so T(6,2) = 6-2 = 4.
PROG
(PARI) \\ Ach is A304972
Ach(n, k=n) = {my(M=matrix(n, k, n, k, n>=k)); for(n=3, n, for(k=2, k, M[n, k]=k*M[n-2, k] + M[n-2, k-1] + if(k>2, M[n-2, k-2]))); M}
T(n, k=n\2+1) = {my(A=Ach(n\2+1, k), S=matrix(n\2+1, k, n, k, stirling(n, k, 2))); Mat(vectorv(n, n, sumdiv(n, d, moebius(d)*(S[(n/d+1)\2, ] + S[n/d\2+1, ] + if((n-d)%2, A[(n/d+1)\2, ] + A[n/d\2+1, ]))/if(d%2, 2, 1) )))}
{ my(A=T(20)); for(n=1, matsize(A)[1], print(A[n, 1..n\2+1])) } \\ Andrew Howroyd, Oct 01 2019
(PARI) \\ column sequence using above code.
ColSeq(n, k=2) = { Vec(T(n, k)[, k]) } \\ Andrew Howroyd, Oct 01 2019
CROSSREFS
Columns 1..6 are: A063524, A056518, A056519, A056521, A056522, A056523.
Partial row sums include A056513, A056514, A056515, A056516, A056517.
Row sums are A285042.
Sequence in context: A219659 A029293 A218254 * A264422 A376498 A176808
KEYWORD
nonn,tabf
AUTHOR
Andrew Howroyd, Apr 08 2017
STATUS
approved