login
A376370
Square array read by antidiagonals: row n lists numbers that occur exactly n times in A036038 (or A050382 or A078760 or A318762), i.e., numbers m such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) is equal to m for exactly n integer partitions (x_1, ..., x_k).
11
2, 3, 10, 4, 12, 6, 5, 15, 20, 420, 7, 21, 30, 630, 120, 8, 24, 56, 840, 1680, 210, 9, 28, 60, 1980, 60060, 1260, 4324320, 11, 35, 90, 3003, 83160, 2520, 21621600, 7207200, 13, 36, 105, 7140, 180180, 5040, 24504480, 151351200, 720720
OFFSET
1,1
COMMENTS
Row n lists numbers m such that A376369(m) = n.
In case there are only finitely many solutions for a certain value of n, the rest of that row is filled with 0's.
Any integer k >= 2 appears exactly once in the array.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..1081 (antidiagonals 1..46)
EXAMPLE
Array begins:
n\k| 1 2 3 4 5 6 7 8
---+---------------------------------------------------------------------------------
1 | 2 3 4 5 7 8 9 11
2 | 10 12 15 21 24 28 35 36
3 | 6 20 30 56 60 90 105 252
4 | 420 630 840 1980 3003 7140 7560 9240
5 | 120 1680 60060 83160 180180 240240 831600 900900
6 | 210 1260 2520 5040 27720 166320 1441440 4084080
7 | 4324320 21621600 24504480 43243200 75675600 116396280 367567200 908107200
8 | 7207200 151351200 302702400 411863760 823727520 1816214400 2327925600 4655851200
CROSSREFS
Cf. A036038, A050382, A078760, A318762, A325472 (complement of first row), A325593 (complement of the union of the first 2 rows), A376369, A376376 (first column).
First five rows are A376371, A376372, A376373, A376374, A376375.
Sequence in context: A031275 A306465 A276104 * A329804 A274299 A119023
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved