login
A376373
Numbers that occur exactly 3 times in A036038, i.e., numbers m such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) is equal to m for exactly 3 integer partitions (x_1, ..., x_k).
4
6, 20, 30, 56, 60, 90, 105, 252, 360, 462, 495, 504, 560, 720, 756, 990, 1320, 1365, 1540, 1716, 2970, 3360, 3960, 4290, 4620, 5460, 6006, 6435, 7920, 8190, 10080, 10296, 10626, 10920, 11628, 12012, 12870, 14280, 15504, 17550, 18360, 21840, 23256, 24024, 24310
OFFSET
1,1
COMMENTS
Numbers m such that A376369(m) = 3, i.e., numbers that appear exactly 3 times in A376367.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..10000
EXAMPLE
6 is a term, because it can be represented as a multinomial coefficient in exactly 3 ways: 6 = 6!/(1!*5!) = 4!/(2!*2!) = 3!/(1!*1!*1!).
CROSSREFS
Third row of A376370.
Subsequence of A325593.
Sequence in context: A242341 A140738 A325593 * A226363 A253906 A031005
KEYWORD
nonn
AUTHOR
STATUS
approved