login
A376374
Numbers that occur exactly 4 times in A036038, i.e., numbers m such that the multinomial coefficient (x_1 + ... + x_k)!/(x_1! * ... * x_k!) is equal to m for exactly 4 integer partitions (x_1, ..., x_k).
3
420, 630, 840, 1980, 3003, 7140, 7560, 9240, 13860, 15120, 25200, 43680, 53130, 55440, 72072, 90090, 116280, 120120, 142506, 277200, 278256, 332640, 371280, 415800, 450450, 480480, 813960, 1113840, 1261260, 1801800, 2018940, 2441880, 2702700, 3255840, 3326400
OFFSET
1,1
COMMENTS
Numbers m such that A376369(m) = 4, i.e., numbers that appear exactly 4 times in A376367.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..10000
EXAMPLE
420 is a term, because it can be represented as a multinomial coefficient in exactly 4 ways: 420 = 420!/(1!*419!) = 21!/(1!*1!*19!) = 8!/(2!*2!*4!) = 7!/(1!*1!*2!*3!).
CROSSREFS
Fourth row of A376370.
Sequence in context: A200521 A350374 A189982 * A070237 A305416 A156687
KEYWORD
nonn
AUTHOR
STATUS
approved