login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376253
Composite numbers k such that 2^(2^(k-1)-1) == 1 (mod k^2).
1
4681, 15841, 42799, 52633, 220729, 647089, 951481, 1082401, 1145257, 1969417, 2215441, 3567481, 4835209, 5049001, 5681809, 6140161, 6334351, 8725753, 10712857, 11777599, 12327121, 13500313, 14709241, 22564081, 22849481, 22953673, 23828017, 27271151, 28758601, 30576151
OFFSET
1,1
COMMENTS
If 2^(k-1) == 1 (mod k) and 2^(2^(k-1)-1) == 1 (mod k), then 2^(2^(k-1)-1) == 1 (mod k^2). In fact, all such pseudoprimes are strong pseudoprimes to base 2.
Other terms; 951481 = 271*3511, 2215441 = 631*3511, 28758601 = 8191*3511, ... are not Fermat pseudoprimes to base 2, where 3511 is a Wieferich prime. The Wieferich prime 1093 cannot be a factor of these numbers (see A374953).
MATHEMATICA
q[k_] := Module[{m = MultiplicativeOrder[2, k^2]}, PowerMod[2, k-1, m] == 1]; Select[Range[1, 10^6, 2], CompositeQ[#] && q[#] &] (* Amiram Eldar, Sep 17 2024 *)
PROG
(PARI) is(k) = (k > 1) && k % 2 && !isprime(k) && Mod(2, znorder(Mod(2, k^2)))^(k-1) == 1; \\ Amiram Eldar, Sep 17 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Sep 17 2024
EXTENSIONS
More terms from Amiram Eldar, Sep 17 2024
STATUS
approved